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Bioenergy parks are low-carbon industrial symbiosis (IS) networks that are also characterized as having a 

higher resource efficiency and economic sustainability compared to stand-alone bioenergy plants. A 

microalgal multi-functional bioenergy system (MMBS) is an example of such network, which is specifically 

developed for the sustainability of algal biofuels. However, such highly integrated energy system is 

inherently vulnerable to capacity disruptions resulting in a less resilient network. The strong 

interdependence between component plants in a bioenergy park decreases system resilience due to 

cascading failure effect. The consequence of such disruption is even greater if the critical components are 

damaged. Resilience is defined in this work as the ability of an energy system to withstand a disruption 

and be able to recover to normal operating conditions. Most risk analysis focus on the vulnerability or 

robustness (i.e., static resilience) of bioenergy parks and lack significant discussions on the recovery rates 

aspect (i.e., dynamic resilience). In this work, a disruption resilience framework is developed to analyze the 

resilience of bioenergy parks against an array of capacity disruption scenarios. This study is primarily 

focused on the effect of single-plant disruption scenarios. The proposed framework is derived from the 

concepts of dynamic inoperability input-output modelling (DIIM) used in economic systems. The method 

shows that the resilience of the bioenergy park is influenced by the recovery time of bioenergy plants and 

their degree of connectivity within the network. The insights from this work can be used for planning and 

developing more disruption-resilient bioenergy parks. An MMBS case study is presented to demonstrate 

the applicability of the resilience framework. 

1. Introduction 

A bioenergy park is an industrial symbiosis (IS) network that is characterized by having lower carbon 

emissions (Ubando et al., 2014), higher resource efficiency (Aviso, 2014), and greater economic 

sustainability (Ng et al., 2015) compared to stand-alone bioenergy plants. A bioenergy park is developed 

through material and energy exchanges between existing bioenergy plants in order to maximize the use of 

products, by-products, and production wastes. An example of such bioenergy park is a microalgal multi-

functional bioenergy system (MMBS) (Ubando et al., 2014), which is developed to achieve sustainability in 

the production of algal biofuels. This system is an array of interconnected facilities consisting of integrated 

microalgal cultivation to biodiesel plant and auxiliary bioenergy production plants. Bioenergy parks are 

highly integrated and highly interdependent energy systems; however, these inherent system properties 

increase the risk of propagating failure in case of component disruptions. Cascading failure occurs when a 

disruption in one component causes the failure of one or more components in a tightly coupled network 

such as an MMBS. A study by Zhu and Ruth (2013) shows that IS networks in general are less resilient 

when there is a high interdependency between components and the disruption originates from a highly 

connected plant. Benjamin et al. (2014) even demonstrated that the criticality (i.e., consequences of 

disruption) of components plants in a bioenergy park is greater if the failure originates from bioenergy 

plants with a high degree of connectivity within the network. 
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Resilience is an emergent property that is needed to improve the sustainability of IS networks (Chopra and 

Khanna, 2014) and other engineered systems (Salzano et al., 2014). The definition of resilience, in this 

work, is similar to the one proposed by Haimes (2009) using a systems-based approach. It is the ability of 

the system to withstand a major disruption within acceptable degradation parameters and to recover within 

an acceptable time (including cost and risk). The resilience or recovery of disrupted component plants in a 

bioenergy park can be modeled using the dynamic inoperability input-output model (DIIM) initially 

developed for economic systems. DIIM originates from the concepts of input-output (I-O) analysis 

proposed by Leontief (1936) that accounts for linear interdependencies (i.e., monetary) of economic 

sectors. The I-O model was then adapted by Haimes and Jiang (2001) to introduce the concept of 

inoperability and later on by Santos and Haimes (2004) by developing the demand-reduction inoperability 

input-output model (IIM). The IIM framework was then extended to a dynamic model to account for 

resilience measures that considers recovery aspects (Lian and Haimes, 2006). Further modifications and 

applications of the dynamic model include the following: a recovery model to analyze the effect of natural 

disasters to workforce systems (Akhtar and Santos, 2013) and using a hybrid IIM – event tree model as a 

decision-making tool in aiding the recovery of interdependent economic sectors (Santos et al., 2014). 

However, to date, DIIM has not been applied to analyze the resilience of bioenergy parks. 

In this work, a disruption resilience framework is proposed to analyze the recovery of bioenergy plants in 

an MMBS. This novel approach integrates the concepts of DIIM in understanding the resiliency of this 

bioenergy park against an array of disruption scenarios (i.e., single-plant disruptions). The proposed 

framework determines the effect of component plant criticality and interdependencies in the recovery time. 

This present work contributes in understanding disruption risks and recovery of component plants in a 

bioenergy park, which are underdeveloped research areas in IS networks. The rest of the article is 

organized as follows. A formal problem statement and methodology deriving the disruption resilience 

framework is presented in the next sections. An MMBS case study is then presented to demonstrate the 

applicability of the resilience framework. Lastly, conclusions and future works are presented towards the 

end of the paper. 

2. Problem Statement 

Assume than an MMBS is composed of n number of bioenergy plants. Each component plant is described 

by scale-invariant material or energy balance ratios. It is assumed that each bioenergy plant produces a 

main product stream. For a given i-th scenario, one particular component plant is disrupted. The method 

also assumes that the reduction in the capacity (i.e., baseline production level) of the bioenergy plant only 

affects its corresponding final output stream. A method developed by Benjamin et al. (2014) for 

determining the criticality of each component plant is then used. Finally, the recovery of disrupted 

bioenergy plants in the five scenarios will be determined and analyzed using DIIM. For each scenario, the 

bioenergy plant is assigned a recovery coefficient, k, and an initial inoperability,  . Figure 1 shows the 

summary for developing the disruption resilience framework. 

3. Methodology 

This section presents the disruption resilience framework developed for bioenergy parks. Each component 

plant in the bioenergy park is described using key mass and energy balances. The MMBS is then 

represented using a physical input-output model and the matrix form is given by Eq(1).  

                 (1) 

  is the process matrix that contains mass and energy balance coefficient ratios in the MMBS,   is the 

component plant capacity vector, and   is the final output vector. The criticality of each disrupted bioenergy 

plant is determined using the method developed by Benjamin et al. (2014). Criticality,  , is defined as the 

fractional change in the final output of the affected product streams relative to the baseline state. The 

recovery of the disrupted component plant in each scenario is then determined using the DIIM shown in 

Eq(2) (Lian and Haimes, 2006). 

                                           (2) 

  is the inoperability vector or disruption vector of bioenergy plants, a risk metric (0≤ ≤1) that describes 

the inability to maintain the desired production levels at a specified time period ( ). An inoperability value of 

0 means that the bioenergy plant is operating at the desired production level and a value of 1 means the 

plant is completely disrupted.   is the recovery matrix (i.e., diagonal matrix) that describes the ability of the 

bioenergy park to recover (in a given time period) from an initial disruption level to a completely operable 
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state (  = 0). The diagonal elements (knn) in the matrix represent the recovery speed of each bioenergy 

plant to the disruption including other inherent characteristics.    is the interdependency matrix (i.e., 

normalized square matrix) that represents the degree of coupling of the component plants.    is the 

perturbation vector that contains final output-side disruptions that may occur after the initial disruption. 

Please see the works of Santos and Haimes (2004) – on the demand reduction and Lian and Haimes 

(2006) – on the risk management, for a complete derivation of Eq(2). 

 

Figure 1: Disruption resilience analytical framework 

 

Figure 2: Microalgal multi-functional bioenergy system flow diagram (adapted from Ubando et al., 2014) 

4. Case study: Microalgal multi-functional bioenergy system  

This MMBS case study is adapted from the bioenergy park described by Ubando et al. (2014). The MMBS 

shown in Figure 2 contains the following component plants: integrated microalgal to biodiesel plant (IMBP), 

methanol plant (MP), biochar plant (BP), anaerobic digestion plant (AD), and combined heat and power 

plant (CHP). These bioenergy plants are designed to produce the following main product streams: 

biodiesel (D), methanol (ML), biochar (C), methane (ME), and power (P) respectively. It is assumed that 

each nth component plant (e.g., IMBP) produces a main product stream (e.g., biodiesel) as its output. The 

Recovery rates (ki) 
of i disrupted plants

Recovery rates (ki) 
of i disrupted plants

Recovery rates (ki) 
of i disrupted plants





Disruption Resilience Analysis 
using Dynamic Inoperability 

Input-output Modeling
Determine the Baseline 

State of the MMBS

Disrupted Component Plant

Disruption Scenario 1

Disrupted Component Plant

Disruption Scenario 2

Disrupted Component Plant

Disruption Scenario i

IMBP

MP BP

AD CHP

ML

C

D

P
ME

IMBP

MP BP

AD CHP

ML

C

D

P
ME

IMBP

MP BP

AD CHP

ML

C

D

P
ME

IMBP

MP BP

AD CHP

ML

C

D

P
ME

Integrated 

Microalgal -

Biodiesel Plant

Methanol

Plant
Biochar Plant

Anaerobic 

Digestion Plant

Combined Heat 

and Power Plant

Biodiesel

Glycerol

Methanol

Power

Heat

Solid 

Residue

Liquid 

Residue

Methane

Biochar

Methane

Methane

Methanol



 

 

1582 

 
MMBS process matrix   consists of the first five data rows and first five data columns of Table 1. The final 

output vector   consists of the first five data rows of the last column of the same table. Each column in the 

process matrix   is considered a process vector wherein key scale-invariant mass and energy balance 

ratios in each bioenergy plant are given. The baseline capacities (i.e., desired production levels) of the 

bioenergy plants are solved using Eq(1) and presented in Table 2. 

Table 1: Process data for the baseline state of the MMBS (adapted from Ubando et al., 2014) 

Product stream IMBP AD MP CHP BP Final output 

Biodiesel, kg/s 1 0 0 0 0 19 

Methane, kg/s 0 1 –0.43 –0.09 0 80 

Methanol, kg/s –0.12 0 1 0 0 10 

Power, MW –17.2 –2.82 0 1 0 5,000 

Biochar, kg/s 0 0 0 0 1 20 

Table 2: Baseline production levels of the MMBS 

Bioenergy plant IMBP, kg/s AD, kg/s MP, kg/s CHP, MW BP, kg/s 

Plant capacity 19 756.75 12.28 7,460.86 20 

 

After determining the baseline production levels of the bioenergy plants, the criticality of each component 

plant is solved using the method developed by Benjamin et al. (2014). A 5 % reduction in production level 

is assumed for computing the consequence of each single-plant disruption scenario. The scenarios are 

then ranked based on the criticality (i.e., net output change based on disruption) as shown in Table 3. It 

can be seen in the table that the most critical bioenergy plant in the MMBS is the AD. This means that the 

disruption of this bioenergy plant causes greater damage to the network compared to other component 

plants. The next critical bioenergy plant is the MP, then CHP, IMBP, and BP. In general, the criticality is 

greatly influenced by the components’ degree of connectivity within the network. Those component plants 

without feedback loops are considered to be least damaging in the bioenergy park as shown in Table 3. 

Risk management measures should be in place to protect critical infrastructures in the network, thus 

avoiding highly damaging events. 

Table 3: Criticality of bioenergy plants 

Scenario 
Disrupted  

component plant 
Criticality, c Rank 

Scenario 1 IMBP 0.010 4 

Scenario 2 AD 0.071 1 

Scenario 3 MP 0.012 2 

Scenario 4 CHP 0.011 3 

Scenario 5 BP 0.010 4 

 

After analyzing the effect of single-plant disruptions in the MMBS, DIIM is used to study the recovery of the 

component plants and the resilience of the bioenergy park. For a given ith scenario, each bioenergy plant 

is assigned a recovery coefficient and an initial inoperability. For illustration purposes, it is assumed that 

the inoperability of the disrupted component plant in all scenarios is 20 % (  = 0.2) or the production level 

is degraded to 80 % (1 –  ). It is further assumed that the recovery coefficient for all bioenergy plants is 

0.25 (  = 0.25) and the production levels will recover to baseline capacity (   = 0). In this work, the 

disruption resilience was measured in terms of the approximate time for the entire bioenergy park to 

recover to 99 % production level, similar to most DIIM studies. 

Figures 3 to 7 shows the dynamic recovery of single-plant disruption scenarios in the MMBS. It can be 

seen that even though some component plants are not initially disrupted (e.g., in Figure 4), they become 

disrupted due to its interdependency with other bioenergy plants. This additional disruption due to 

interdependency affects the overall resilience of the MMBS. It can also be seen that faster full recovery is 

attained when the disrupted component plant (e.g., BP) is sparsely connected in the network or there are 

no internal requirements for their main product. It can be seen from these figures that it takes longer time 

to attain full recovery if the disruption originated from critical components (e.g., AD) of the bioenergy park. 

It terms of recovery time, it means that the bioenergy park is less resilient when the anaerobic digestion 
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plant becomes inoperable. This also affects the resilience cost (i.e., repair cost + production losses cost) 

as additional cost due to losses in production is increased as the time to full recovery lengthens.  

In addition, although MP is the second most critical plant it has a relatively faster recovery time, this can be 

due to its low level of dependency to other components. According to Zhu and Ruth (2013), the disruption 

of connected plants such as the methanol plant will not affect network resiliency if the dependency is low. 

However, if the interdependency is high as seen from Figures 4 and 6, the recovery time is affected. It can 

be seen from Figure 6 that at many points during the repair of CHP, the inoperability of AD is greater than 

that of the initial disrupted component plant. To sum, the previous observations suggest that the resilience 

(or recovery time) of the bioenergy park depends both on the network connectivity and level of component 

interdependency. In this particular case study, it is shown that the bioenergy park is less resilient (i.e., 

longer recovery time needed) if the disrupted plants are highly connected and has high level of 

interdependency with other components within the network. Also, relatively longer recovery time is attained 

if the type of scenario has high disruption consequence (e.g., scenario 2).  

 

Figure 3: Dynamic recovery of disruption scenario 1 (IMBP) 

 

Figure 4: Dynamic recovery of scenario 2 (AD) Figure 5: Dynamic recovery of scenario 3 (MP) 

 

Figure 6: Dynamic recovery of scenario 4 (CHP) Figure 7: Dynamic recovery of scenario 5 (BP) 
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These results necessitate risk managers to create strategies and policies to mitigate the disruption 

consequence of critical components in the bioenergy park. At the same time, the repair or recovery time 

must be decreased in case the disruptions originate from these critical components. Aside from these, 

increased system resiliency can be addressed by implementing redundancy, increasing spare capacity, 

and adding multi-functionality (Chopra and Khanna, 2014). The disruption resilience framework proposed 

in this study is an initial step and contributes greatly in understanding the dynamic complexities present in 

IS networks, particularly in bioenergy parks. 

5. Conclusions 

A novel disruption resilience framework was developed in this work to analyze the recovery of component 

plants and understand the overall resilience of bioenergy parks. The concepts of DIIM are used to analyze 

the resiliency of an MMBS against single-plant disruption scenarios. The proposed framework 

demonstrated that the resilience of the MMBS is influenced by the recovery time of each bioenergy plant 

and interdependencies within the network. The present work contributes in understanding the relatively 

underdeveloped research area in IS networks, which are disruption risks and resiliency of bioenergy parks. 

Risk-based insights from this study can be used as inputs for planning and developing more disruption-

resilient bioenergy parks. Future work will focus on estimating the recovery coefficients of the MMBS, 

since such value is influenced by specific physical characteristics and risk management policies. 
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