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Inoperability input-output modeling (IIM) was introduced as a methodology for determining ripple effects 

propagating through interdependent infrastructure systems as a result of disruptive events such as natural 

disasters. It is based on the dimensionless metric of inoperability which indicates degree of failure along a 

scale ranging from 0 to 1. Previous approaches have focused on calibration of interdependencies based 

on records of economic statistics; IIM has also been used mainly for identifying the vulnerability and 

criticality of system components. More recent work has demonstrated that the IIM framework can be the 

basis for optimal allocation of inoperabiltiy in order to minimize damage caused by disruptions. In this work, 

we propose a P-graph methodology derived from IIM. Interdependency coefficients are integrated within a 

P-graph model to enable limited capacity of infrastructure following a disruption to be optimally allocated. 

We demonstrate this methodology using a literature case study.  

1. Introduction 

Risk analysis has developed as an essential means of ensuring the safe operations of increasingly 

complex man-made systems. It is now recognized that systematic approaches are needed to understand 

both potential causes and consequences of adverse events. For example, in the case of urban 

infrastructure, risks may arise from port facilities (Kazaras et al., 2013) or road networks (Pastorino et al., 

2014). According to Kaplan and Garrick (1981), proper risk analysis entails identifying:  

 What can go wrong?  

 What is the likelihood of each adverse event?  

 What are the consequences of each adverse event?  

The complexity of modern urban infrastructure systems makes the third risk analysis question especially 

crucial to decision-making. One of the methods developed recently to elucidate the potential of “ripple 

effects” to cascade through interdependent infrastructure systems is inoperability input-output modelling 

(IIM), which was first proposed by Haimes and Jiang (2001). The IIM framework is based on economic 

input-output (IO) analysis (Leontief, 1936), which describes linkages among economic sectors via linear 

equations. IO methods are sufficiently well-establishes as a tool for such purposes as economic analysis; 

fundamental principles as well as many of the potential applications can be found in modern textbooks 

(Miller and Blair, 2009). Conventional IO models measure physical or monetary flows of goods, but in 

principle, the same mathematical framework can be used to describe non-physical flows as well. For 

example, a recent work by Hester and Adams (2013) used an IO model to describe workplace influence 

patterns. Similarly, Haimes and Jiang (2001) proposed the dimensionless quantity known as inoperability 

as a normalized index of risk in infrastructure systems. Inoperability assumes a value of 0 for systems in 

normal state, fractional values for partially dysfunctional systems, and 1 for systems in a state of complete 

failure. Furthermore, it is assumed that inoperability exhibits linear behaviour, a property which has 

enabled it to be used as a quality index in source-sink systems solved via Mathematical Programming 

(Tan et al., 2011) or Pinch Analysis (Tan and Foo, 2013). Subsequent work refined the definition of 
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inoperability as a fractional loss relative to a nominal desired state, which has enabled the calibration of 

IIM models from government economic statistics (Santos and Haimes, 2004). Alternative approaches for 

the calibration of IIM models have also been proposed, for example via fuzzy set theory and expert 

judgement (Setola et al., 2009). The methodology has been applied to the analysis of various disruptive 

events, such as intentional attacks (Santos and Haimes, 2004) and loss of key economic or natural 

resources (Khanna and Bakshi, 2009). 

Beyond a purely descriptive application of impacts of adverse events, there have also been attempts to 

integrate IIM with optimization techniques to enable active management of ripple effects. An early linear 

vector optimization model was proposed by Kananen et al. (1990) using an IO framework. A brief 

description of an optimization-based extension of IIM was given by Haimes and Jiang (2001), and 

developed further in a subsequent paper (Jiang and Haimes, 2004). Tan et al. (2015a) proposed a linear 

programming model to evaluate the capacity of systems to absorb exogenous shocks. An optimization 

model for allocating capacity in urban systems under crisis conditions was developed by Holden et al. 

(2013). A recent approach based on fuzzy optimization for the economy-wide allocation of scarce 

resources was recently proposed by Tan et al. (2015b). In addition, it was recently shown by Aviso et al. 

(2015) that similar problems can be addressed using P-graph methodology; this is a graph theoretic 

approach whose mathematical foundations were proposed by Friedler et al. (1992a), and whose various 

applications have been surveyed in aa recent review (Lam, 2013). Analogous approaches for abnormal 

operations of polygeneration systems have also been proposed based on both mathematical programming 

(Kasivisvanathan et al., 2013) and P-graphs (Aviso et al., 2015). 

In this paper, a P-graph based approach is proposed for the allocation of inoperability to interdependent 

urban infrastructure systems under an IIM framework. This hybrid methodology allows ripple effects 

caused to be managed to ensure that minimal overall damage is incurred for the system. The rest of the 

paper is organized as follows. Section 2 first gives a formal problem statement. The IIM framework is 

briefly described in Section 3, while the P-graph methodology is discussed in Section 4. Then, a case 

study based on the classic four-component example of Haimes and Jiang (2001) is shown in Section 5 to 

illustrate the methodology. Finally, concluding remarks are then given in Section 5. 

2. Problem Statement 

The formal problem statement is as follows: 

 Given a system comprised of multiple infrastructure system components with known levels of 

mutual interdependency 

 Given an adverse event that induces an initial inoperability in a subset of the said system 

components  

 Given a function that describes the total system-level dysfunction (i.e., aggregated inoperability), 

taking into account both direct and indirect impacts of the adverse event 

 The problem is to allocate reduced infrastructure capacity to give the minimum level of total 

system-level dysfunction 

Mathematical programming and P-graph solution approaches are discussed in the succeeding sections. 

3. IIM Methodology 

The basic formulation of the IIM (Haimes and Jiang, 2001) is: 

 

(I – A*) q = c* (1) 

 

Where I is the identity matrix, A* is the square interdependency matrix, q is the inoperability vector and c* 

is the perturbation vector. Each element in A* gives degrees of influence or interdependency of one 

component on another. For feasible systems, this equation may be rearranged to give: 

 

q = (I – A*)
–1

 c* (2) 

 

Eq(2) gives the total system inoperability, q, as a function of the perturbation c*. The inverse (I – A*)
–1

 has 

amplification properties, such that each element of q is larger than the corresponding element in c*. The 

amplification simply means that total losses (q) are greater than the direct impacts (c*) due to additional 

indirect effects resulting from system topology as described by A*. 
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Both Eq(1) and Eq(2) have zero degrees of freedom, thus allowing a unique solution to be identified for a 

given system. By introducing new assumptions, additional degrees of freedom may be obtained to allow 

for system optimization, resulting in the linear programming (LP) model:  

 

minimize w
T
q  (3a) 

 

subject to: 

(I – A*) q = c* (3b) 

c*L  c*  c*U (3c) 

0  qj  1  j (3d) 
 

Where w is the weight vector that quantifies the importance of each infrastructure system component, and 

c*L and c*U are the lower and upper limits of perturbation c*. For the perturbed infrastructure i = k, we have 

c*k,L = c*k,U = c*k. For the infrastructure system components not subject to direct disruption (i  k), it is 

assumed that some c*i,L can assume small negative values due to the presence of spare capacity. Thus, 

the spare capacity may be used to introduce negative perturbations in the system so as to offset 

anticipated losses from ripple effects. It should be noted that such negative perturbation levels have not 

been discussed in IIM literature, although in principle there can be physical basis for their existence. 

Hence, this model minimizes the total weighted inoperability of the system for a given perturbation from an 

adverse event using such interventions. Additional system constraints can be added to extend this into a 

mixed-integer linear programming (MILP) formulation, as described by Tan (2011).   

4. P-Graph Methodology 

P-graph methodology is a graph theoretic approach to solving process network synthesis (PNS) problems. 

Its axioms and theorems were first described by Friedler et al. (1992a), while the resulting implications for 

the development of solution algorithms were described in a subsequent paper (Friedler et al., 1992b). In 

particular, the rigorous approach to maximal structure generation is an important element to ensuring a 

comprehensive coverage of possible solutions (Friedler et al., 1993). Various applications covering a 

period of two decades are documented by Lam (2013). Meanwhile, recent applications to optimal 

adjustments to crisis conditions have been described for both economic (Aviso et al., 2015) and 

engineering (Tan et al., 2014) systems.  

P-graph methodology is based on the description of streams and process units. Streams may be further 

classified as raw materials or products. The main components of the methodology are: 

 Maximal structure generation (MSG) – the identification of all possible connections given a 

predefined set of processes. 

 Solution structure generation (SSG) – the identification of feasible subsets of the maximal 

structure, each of which represents a candidate solution topology 

 Accelerated branch and bound (ABB) – the identification of an optimal solution, where reduction 

of computing effort is achieved by restricting search to the feasible solution structures only 

P-graph methodology may be implemented using the software PNS Draw and PNS Studio, both of which 

are available from the P-graph web site (P-graph, 2015), along with on-line tutorials. 

5. Case Study 

This case study is based on the four-component urban infrastructure system described in (Haimes and 

Jiang, 2001). The system is comprised of: 

 Component 1 – Power infrastructure (e.g., power plant and transmission grid) 

 Component 2 – Transportation infrastructure (e.g., road and rail networks) 

 Component 3 – Health infrastructure (e.g., hospitals and clinics) 

 Component 4 – Commercial infrastructure (e.g., grocery stores and retail outlets) 

The coefficients of the interdependency matrix A* are given in Table 1. The coefficients may be interpreted 

as in the following example. Complete failure of the power infrastructure (j = 1) will result in 40 % 

inoperability in the transportation infrastructure (i = 2) and 100 % inoperability of the health (i = 3) and 

commercial infrastructure (i = 4).  

A storm is then assumed to render the transportation infrastructure partially inoperable, such that c* = (0  

0.2  0  0)
T
. However, it is assumed here that there is 10 % excess capacity in the power infrastructure 

which is normally left unutilized. Such spare capacity may be activated to offset the system disruptions. 

The maximal structure is shown in Figure 1. Solving the model via P-graph results in the solution shown in 
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Figure 2, where c*1 = 0.1. This solution implies that surplus capacity is activated in anticipation of system 

losses from ripple effects. 

Table 1: Interdependency coefficients for the urban infrastructure system (Haimes and Jiang, 2001) 

 j = 1 j = 2 j = 3 j = 4 

i = 1 0 0.9 0 0 

i = 2 0.4 0 0 0 

i = 3 1 0.8 0 0 

i = 4 1 0.9 0 0 

 

 

Figure 1: P-graph representation of maximal structure of infrastructure system 

The values of perturbations and inoperability for the four infrastructure system components in the optimal 

solution are given in Table 2. Note that the same solution may be derived by solving the model defined by 

Eq(3a – d). 

Table 2: Perturbation and inoperability of urban infrastructure system 

 Perturbation Inoperability 

Power infrastructure 0.1 0.125 

Transportation infrastructure +0.2 0.250 

Health infrastructure  0 0.325 

Commercial infrastructure 0 0.350 
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Figure 2: P-graph representation of optimal inoperability flows in infrastructure system 

6. Conclusions 

A P-graph based approach to the allocation of inoperability in urban infrastructure systems has been 

proposed in this work using the IIM framework. This hybrid methodology enables limited system capacity 

to be allocated in order to minimize system-wide losses incurred as ripple effects cascade through 

interdependent system components. A case study from literature involving interdependent urban 

infrastructure systems was solved to illustrate this approach. The solution achieved via P-graph 

methodology in this example identifies how excess capacity in electricity generation can be activated 

during the crisis to mitigate inoperability in other key system components. Similar principles can be readily 

extended to more complex urban infrastructure systems. Future work will address further research issues 

pertaining to calibration of the interdependency matrix and definition of priority weights assigned to each 

infrastructure system. This approach may further be extended for optimal planning of spare capacity. 
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