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In this paper, the effect of replacing water with various nanofluids as the heat transfer media in an 

industrial Heat Recovery Loop (HRL) have been modelled. Generally, nanofluids are prepared by 

distributing a nanoparticle through a base fluid such as water. Suspended nanoparticles slightly affect the 

thermal and physical properties of the base fluid. Primarily nanoparticles are added to improve the fluid’s 

heat transfer characteristics by increasing its Reynolds number and thermal conductivity. Results show 

that by applying various HRL design methods and a nanofluid as an intermediate fluid, an increase in heat 

recovery is possible without the need for extra heat exchanger area and infrastructure. With the addition of 

1.5 vol.% CuO nanoparticles to the HRL fluid using constant temperature storage method, heat recovery 

from liquid-liquid heat exchangers increases between 5 % and 9 %. In the case of air-liquid exchangers, 

the air-side heat transfer coefficient limits the impact of using a nanofluid. In other cases, the duty available 

from the process stream, such as a condenser, significantly restricts the heat transfer benefit of using a 

nanofluid. Alternative to increasing heat recovery, results show that applying a nanofluid in the HRL design 

phase enables heat exchanger area to decrease significantly for liquid-liquid matches. 

1. Introduction 

Different concepts and methods have been proposed to minimise energy use in process plants ranging 

from heat recovery systems for individual processes to total site integration. Along with other principles of 

Process Integration techniques, Pinch Analysis has been established as one of the most useful tools for 

analysing and optimizing energy systems of process plants. These standard techniques can be applied for 

targeting energy use and developing heat exchanger networks for single plants (Kemp, 2007). On a wider 

scale Total Site Integration offers energy conservation opportunities for sites with multiple processes and 

plants. Dhole and Linnhoff (1993) introduced the Total Site concept to describe a set of processes 

serviced by and linked through a central utility system. By considering inter-plant integration, Total Site 

Analysis has the potential to identify further energy savings. 

By using an intermediate fluid such as steam or hot oil (for high temperature processes) or hot water (for 

low temperature processes) through a central utility system, indirect integration offers greater advantages 

of flexibility and process control but has a lower energy recovery target compared to direct integration. The 

intermediate fluid transfers excess heat from one plant to another. Thermal storage is needed to balance 

the instantaneous imbalances of the intermediate fluid flow between distinct processes. This system is 

called as Heat Recovery Loop (HRL) (Atkins et al., 2010). In recent years, several researchers have 

studied various parts of the design, operation and optimization of heat recovery loops, e.g. new thermal 

storage design by using a stratified tank (Walmsley et al., 2009), changing of storage temperature for 

seasonal production changes (Atkins et al., 2010), utilisation and sizing of thermal storage capacity (Atkins 

et al., 2012).  

The conventional control system of a HRL measures and compares the outlet temperature of the loop fluid 

from each heat exchanger to a common hot or cold temperature set point. The flow rate of fluid through 

each heat exchanger is adjusted to achieve set point temperature. In this approach hot and cold storage 
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temperatures are constant over time, thus this approach is called the constant temperature storage 

approach (CTS). An alternative approach to HRL control is varying the set point of the heat exchangers 

depending on their temperature driving force. This alternative approach is called variable temperature 

storage (VTS) due to mixing of different temperatures entering the tanks (Walmsley et al., 2013a). 

Walmsley et al. (2014) compared the two HRL control approaches to find the VTS system results in more 

effective distribution of temperature driving force between heat exchangers, lower average loop flow rates 

giving reduced pressure drop and pumping requirements, and increase in average temperature difference 

of hot and cold storage temperature, which increases thermal storage density and capacity.   

Various techniques have been applied to increase heat transfer rates in heat exchangers and decrease 

heat and energy losses in process industries. These methods are known as Heat Transfer Enhancement 

(HTE). Generally speaking, HTE techniques are divided in two main groups: active techniques and passive 

techniques. In active techniques an external force is required (e.g. surface vibration, electrical or magnetic 

field, or acoustic move on fluid). Passive techniques, on the other hand, require no external forces. Rather 

it increases heat transfer by changing the surface geometry or by adding some additives to the fluid 

(Huminic and Huminic, 2012).  

For many decades, adding solid particles to conventional fluids has been considered due to their high 

thermal conductivity. However, in practice, operational problems, such as fouling, sedimentation and 

increased pressure drop, occur by using these additives which dissuades industry from applying this type 

of HTE technique. In recent decades, progress in nanomaterials technology has made it conceivable to 

overcome these problem by producing particles at a nano-scale. Suspended nanoparticles in a fluid 

creates a new innovative category of fluids called nanofluids. Nanofluids are a class of fluids with a 

suspension of nano-sized particles, which aims to enhance a fluid’s heat and mass transfer performance 

(Daungthongsuk and Wongwises, 2007). Water, ethylene glycol, transformer and turbine oil, and liquid 

paraffin are usually used as the base fluid, while metals and metal oxides such as Cu, CuO, Al2O3, SiO2, 

TiO2. The size of the nanoparticles are typically smaller than 100 nm.  

In this paper the benefits of using a nanofluid as the heat transfer media in HRLs is investigated. Heat 

transfer correlations for nanofluids are reviewed from four recent papers. Various combinations of 

nanoparticles in water are examined to find which combination returns the best heat coefficient for the 

same vol. % of nanoparticles added. The selected nanofluid is then applied to replace the intermediate 

fluid in an industrial HRL model. 

2. Literature review on nanofluids and their characteristics  

Generally, in fluids, the effectiveness of heat transfer is described by the convective heat transfer 

coefficient, which is a function of a number of thermo-physical fluid properties, the significant ones being 

thermal conductivity, specific heat, viscosity and density.  

2.1 Estimation of nanofluid thermo-physical properties 
Nanofluid thermo-physical properties have been calculated by Eqs(1) to (4) from Khairul et al. (2014). 
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Where K andcp are respectively density, viscosity, thermal conductivity and specific heat, is particle 

volume fraction (%), and T is the temperature in °C. Subscripts np, bf and nf are refer to nanoparticle, base 

fluid and nanofluid, respectively.  

2.2 Nanofluid heat transfer coefficient correlations in literature 
Several experimental and theoretical studies on the heat transfer coefficient of nanofluids in Plate Heat 

Exchangers (PHE) under a turbulent regime have been reported in literature. Khairul et al. (2014) 

illustrated that the heat transfer coefficient of CuO-Water nanofluid increased by 18 – 27 % compared to 
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water. Their work was very similar to a previous study of  the same nanofluid, which presented the 

following Nusselt number correlation (Pandey and Nema, 2012).  

27.02 )0051.02.026.0( PeNu      0.5 ≤  ≤ 1.5 (5) 

Tiwari et al. (2013) investigated nanofluids made by using Al2O3, SiO2, TiO2 and CeO2 nanoparticles. Their 

investigation showed the heat transfer coefficient of the nanofluid increased with increases in the volume 

flow rate of the non-nanofluid and nanofluid and with a decrease in the main fluid temperature (Tiwari et 

al., 2013). Tiwari et al. summarised their results using the following equation. 

33.0663.0 PrRe348.0Nu    0.5 ≤  ≤ 3.0 (6) 

Eq (7) was developed by Pantzali et al. (2009) as they studied the efficiency of CuO-Water nanofluid with 

4 vol.% of CuO nanoparticles as coolants in commercial PHE. According to their findings, the nature of 

coolant flow, e.g. turbulent flow, inside the heat exchanger play a significant role in the effectiveness of 

nanofluids.  

4.066.0 PrRe247.0Nu    ≤ 4.0 (7) 

In the above equations, Nu, Pe, Re andPr are Nuselt number, Peclet number, Reynolds number and 

Prantel number, respectively.  

2.3 Nanofluid heat transfer coefficient calculation and results 
CuO-Water, Al2O3-Water, SiO2-Water and Cu-Water nanofluids have been initially investigated to find the 

best nanofluid for use in a HRL system. Several options of nanofluid and their impact on the heat transfer 

coefficient have been plotted in Figure 1. Figure 1A shows Cu-Water nanofluid tend to higher increase in 

convective heat transfer coefficient; however, at nano scale it is likely that Cu particles will oxidize in the 

vicinity of water. Therefore, for our purpose CuO-water nanofluid, the second best, has been chosen 

(Figure 1(a)). On the other hand, Eq(5) has a higher heat transfer coefficient increase for the CuO-Water 

nanofluid (Figure 1(b)). 

The most important part of analysing nanofluid heat transfer enhancement is to find how much different 

correlations led to increase in heat transfer coefficient when compared to water. Figure 1B illustrated that 

according to Eq(5) percentage change in heat transfer coefficient increase up to 25 % at 1.5 vol.% in the 

nanofluid, while Eq(6) and Eq(7) show a linear increase by increasing of nanoparticle volume percentage 

in the nanofluid. Note that, Eq(5) limits  up to 1.5 vol.%, in this correlation adding more nanoparticles in 

base fluid will cause reduction in Heat Transfer Coefficient (Pandey and Nema, 2012). All above led to 

select CuO-Water nanofluid with 1.5 vol.% of nanoparticle to observe 25 % increase in HRL intermediate 

fluid convective heat transfer coefficient.  

 

Figure 1: (a) Heat transfer coefficient vs. volumetric percentage of Water-CuO, Water-Al2O3, Water-SiO2 

and Water-Cu nanofluids using Eq(5), and (b) Comparison of heat transfer coefficient increase percentage 

vs. volumetric percentage of Water-CuO nanofluid for Eq(5), Eq(6) and Eq(7). 
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3. Methods 

An Excel™ spreadsheet has been developed in order to calculate thermo-physical properties of nanofluids 

including their heat transfer coefficient using the method from Khairul et al. (2014). Table 1 shows the 

thermo-physical properties of the water, as base fluid, and water-CuO, as nanofluid, in HRL. An increase 

in density, thermal conductivity and viscosity values for the nanofluid as well as decrease in heat capacity 

is as expected. Adding 1.5 vol.% CuO nano-particles to water is estimated to increase the heat transfer 

coefficient by 25 % (Eq 5), from 4.00 kW/m
2
.K to 5.0 kW/m

2
.K. 

Table 1: Thermo-physical properties of base fluid and nanofluid in HRL. 

Fluid   (kg/m
3
) Cp (kJ/kg.K) K (W/m.K)  (kg/m.s

2
) h (kW/m

2
.K) 

Water 1,000.0 4.18 0.60 0.00100 4.0 

Water-CuO 1,135.7 3.66 0.76 0.00106 5.0 

 

The steady state ΔTmin HRL design method presented by Walmsley et al. (2013b), which is discussed 

further in detail in the Handbook of Process Integration (Klemeš, 2013), is applied for transient stream data 

analysis to calculate heat recovery. Four methods to operate and design a HRL have been applied based 

on methodologies presented by Walmsley et al. (2013a), these are: 

i. Conventional design method with CST control. 
ii. New VTS method of HRL design and operation. 
iii. CTS method using water-CuO as intermediate fluid in HRL. 
iv. VTS method using water-CuO as intermediate fluid in HRL. 

 
The first two methods have been applied in previous works (Walmsley et al., 2013a) and results show that 

VTS method provides more heat recovery than CTS method. In this paper, the per cent increase in heat 

recovery for the two HRL design methods are compared to see if the one benefits more than the other.      

4. Heat recovery loop with nanofluid case study 

4.1 Dairy Factory Case study 

A large multi-plant dairy factory has been chosen as a case study. The existing HRL is using water as the 
intermediate fluid. The factory consists of eight separate semi-continuous plants that share common utility, 
powder and materials handling services. Plants have been investigated and integrated to industry best 
practice. A HRL was installed as a dedicated indirect heat recovery to increase inter-plant heat integration. 
For further improvement in the HRLs performance is desired and modifying intermediate fluid (water) to 
become nanofluid is investigated.  

4.2 Data extraction 
Process streams from each plant connected to the HRL are presented in Table 2, which Ts and Tt are 

supply and target temperatures, and CP represents heat capacity flow rate. The data is taken from 

Walmsley et al. (2014) where the full transient characteristics are presented. 

Table 2: Extracted Stream data 

Stream Type Ts (°C) Tt (°C) CP (kW/K)  Stream Type Ts (°C) Tt (°C) CP (kW/K) 

Dryer Exhaust A Hot 75 55 139  Site Hot Water Cold 16 65 160 

Dryer Exhaust B Hot 75 55 73  Milk Treatment A Cold 10 50 104 

Dryer Exhaust C Hot 75 55 44  Milk Treatment B Cold 10 50 104 

Dryer Exhaust D Hot 75 55 28  Milk Treatment C Cold 11 50 116 

Utility Unit A Hot 45 30 8  Whey A Cold 12 45 16 

Utility Unit B Hot 45 30 8  Whey B Cold 14 45 9 

Casein A Hot 50 20 22       

Casein B Hot 50 20 32       

Casein C Hot 50 20 32       

Condenser Hot 80 79 351       

Cheese A Hot 35 20 98       

Cheese B Hot 35 20 114       
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4.3 Results and discussion 
The increase of heat recovery as result of applying each design and control procedure is presented in 

Figure 2. Adding nanofluid to the original intermediate fluid, i.e. water, in the CTS method a wide range of 

variation in increased heat recovery for the process streams on the HRL. The highest increase is in Whey 

B with 9 % increase and lowest increase is shown in Casein plants, especially Casein B with 5.1 % 

increase. For hot streams Cheese A* and B*, in case of the CTS method, the hot loop temperature is 

greater than the stream’s supply temperature, and therefore heat recovery is not allowed under the CTS 

approach. For Dryer Exhaust A, B, C, and D a very small increase is observed, which indicates the air side 

is the limiting heat transfer coefficient. Also, Utility A and B and Condenser have fixed duties and so 

increasing the heat transfer coefficient does not impact on heat recovery. 

 

 

Figure 2: Heat recovery increase in each process heat exchanger, comparison between (CTS+NF)/CTS 

and (VTS+NF)/ VTS.  

In the case of applying VTS and VTS with nanofluid methods, again a wide range of differences in 

increase of heat recovery appears. In this case, Cheese A shows highest heat recovery increase with 6 % 

while Milk Treatment A and B have the lowest increase, 2.6 %. Moreover, it shows a small change in heat 

recovery for Dryer Exhaust A, B, C, and D and again hot utilities which are condenser, Utility A, and Utility 

B remain constant due to their fixed duty. Average increase of heat recovery for the entire factory is about 

4% in the case of CTS with nanofluids and 2.5 % in the case of VTS with nanofluids. Liquid-liquid heat 

exchangers, exclusively, shows 7 % and 4 % increase respectively for CTS and VTS with nanofluids. The 

differences in the increases in heat recovery between the streams is due to different stream 

characteristics, flow rates, and heat exchanger types and geometries. If a nanofluid and its enhanced heat 

transfer coefficient were applied in the design process to obtain the same duties as the original design 

without nanofluids, total heat exchanger area decreases as given in Table 3. Liquid–liquid matches show a 

decrease in area of 10 % whereas the decrease in area for gas-liquid matches is negligible. This causes a 

reduction in capital investment for the heat recovery system and site. Future work will look at the impact of 

using a nanofluid on the pressure drop and pumping power required for the HRL. 
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Table 3: Comparison of reduction in area for different matches 

Match Type Reduction in Area (%) 

Gas - Liquid  0.3 

Vapour - Liquid 7.5 

Liquid - Liquid 10.0 

5. Conclusions 

Adding 1.5 vol.% CuO to the intermediate fluid of a HRL shows an increase in heat recovery of whole 

plant. Results show that by applying various HRL design methods accompanied by using nanofluid as an 

intermediate fluid is desirable way of achieving significant heat recovery without the need for extra heat 

exchanger area and infrastructure. In the case of air-liquid exchangers, it is clear that the air side heat 

transfer coefficient plays a significant role in controlling the overall heat transfer coefficient and in utility 

and condenser streams no changes in heat recovery are observed because they are a fixed duty. 

Alternative to increasing heat recovery, results show that by using nanofluid as intermediate fluid of HRL 

total heat exchanger area in the HRL for liquid- liquid heat exchangers decreases significantly.        
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