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Nowadays, shift towards an effective waste management is a big issue as well as a necessity for many 

countries. Infrastructural projects in waste management (e.g. new waste-to-energy plants, WTE) have 

long-term implementation phase (up to 10 y). WTE, processing residual waste, represent keystone 

of sustainable concepts. In this context, information on waste availability and incinerated waste properties, 

especially calorific value, are vital for successful design and operation of these plants. However, hardly 

predictable future changes in these parameters make the design process challenging. 

In this contribution, we present a tool for verification and forecasting of current and future production of 

residual municipal waste and its lower heating value (LHV) to support WTE design process. Newly 

developed tool JUSTINE is introduced. From the principal point of view it is a wait-and-see optimization 

model recursively applied to region divided into several sub regions and also their parts. 

It processes variety of spatially distributed statistical data bound together through equations and 

constraints. This data is supposed to be incomplete (some local information might be unavailable) and 

uncertain. The wait-and-see optimization model is used to obtain point estimates of desired parameters 

that can be used for waste production and LHV forecasts. In addition, for randomly simulated input data 

reflecting real-world uncertainties empirical confidence intervals of input and output values can be 

computed. The practical contribution of this tool is presented through a case study. 

1. Introduction 

All methods of the waste treatment, in line with the waste management hierarchy (Directive 2008/98/EC, 

2008), such as WTE, are embodied in the effective waste management. WTE process residual waste with 

energy production and thus significantly contributes to minimize the landfilling, which is in the last place of 

this hierarchy due to no waste utilization, and therefore, it is the least appropriate option. Based on 

examples of European countries with high maturity level of the waste management, such as Germany or 

Austria, it can be shown that there is still about 50 % of waste that must be diverted from landfill by using 

another way of treatment, even when using the potential of the first three levels of the waste management 

hierarchy and high usage level of recycling and composting. This amount of waste is designated as 

residual solid waste (RSW) and WTE is a suitable technology for its processing (Eurostat, 2014). In many 

countries, both in Europe (Šomplák et al., 2013) and outside of Europe (Santibañez-Aguilar et al., 2014), 

the effective waste management becomes very current topic. Therefore there is an increasing motivation 

for construction of new WTE units. However, there is a necessity to know the amount of available RSW 

and its LHV, both in the present and with respect to future trend, in order to be able to plan operations and 

economy of WTE (Touš et al., 2013). 

This article builds on a study Putna et al. (2014), where the concept for a new computational system 

designed to predict waste production and LHV based on a realistic assumption of differences in availability 
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of spatially heterogeneous and hierarchical input data, was introduced. In this paper, the model and 

implementation of the above mentioned concept and the case study will be presented (see Section 4).  

2. Principal modeling ideas 

Generally, available data on the production of RSW and its LHV are variable both in time and within 

territorial location, which makes the process of planning of new WTE processing capacities more 

complicated. Furthermore, countries with less developed waste management generally suffer from poor 

data base regarding the RSW production. The LHV is known only sporadically because the systematic 

surveys on the waste composition are very rare. Usually, there are available only non-complex data 

sources, such as public databases, operating data or local waste studies. An important feature of data 

sources is and inaccuracy of provided values. The aim is then to design a comprehensive, predictive tool 

to estimate waste production LHV at several levels of territorial arrangement. 

Theoretical concept of the tool is based on the assumption that searched RSW weight and LHV, required 

as inputs for further calculations (see motivation above), are not available in ideal quality. There are only 

measurement results or expert estimates, where they are expected to be burdened by the random error. 

Therefore, the aim will be to obtain relevant forecasts, as complete as possible, which are close to ideal 

values of the unknown parameters. Estimated representative amounts of the randomly fluctuating RSW 

(denoted m) and LHV are marked with an asterisk (m*, LHV*) and inaccuracy of this estimate to real value 

is denoted by ε. Superscripts then specify to which variable the error refers and subscripts denote 

territorial units. 

 The estimated values are then obtained by minimizing a suitable criterion – the objective function. The 

objective function is then formed by the sum of the absolute values of inaccuracies ε, and therefore, the 

emphasis is placed on the robustness of the estimation of unknown parameters (i.e. the weights of large 

deviations, which are frequently present in heterogeneous data, are not accentuated). Like in regression 

models, the theoretical (wait-and-see) model is considering the minimization of random errors, but for 

computational purposes their observed values are used. The above mentioned objective function related 

ideas are further utilized to obtain constraints taking into account both input data and hierarchical structure 

of territorial units. They also guarantee that the data for higher territorial unit is not contradictory with the 

aggregated data of sub-units involved in the higher unit. Specifically, the set of constraints is formed by 

energy balances for each type of territorial units and equipment. Total energy in a given area is determined 

as a product of the weight of the waste produced in this area and the corresponding LHV value. Due to 

these energy balances, the computational system becomes nonlinear and it is necessary to use the 

nonlinear programming techniques for minimization of the objective function subject to discussed 

constraints. Due to incomplete data, alternative optimal solutions can be expected. In addition, considering 

nonlinearities included in the equations, the problem is non-convex, and thus, the possible existence of the 

local extremes must be taken into account for the choice of a suitable solution algorithm. The model also 

envisages the possibility of the use of operational data and data inputs include both amounts of RSW 

generated or processed, as well as, information on LHV. 

3. Mathematical model 

The resultant calculation of m and LHV for the particular territorial area or facility is given by Eq(1)-(2). The 

equations together with related weighting of input data sets using parameters ν are described in detail in 

Section 4. Due to the approach of minimizing the sum of the absolute values of the inaccuracies, the 

individual errors were divided into positive and negative component, denoted by signs (+) or (-) in the 

indices, see Eq(3)-(4). Both of those components are defined as non-negative, and so, the negative 

deviation can be described by their difference. Then, the sums of these components represent the 

absolute values of inaccuracies and are denoted by  ̂ - see Eq(5)-(6). Eq(7) describe hierarchical relations 

for energy balances. For this purpose we denote territorial units by indices        . If unit with index j 

immediately belongs to higher unit indexed by i, we say that i is an ancestor of j and write       . We 

also identify for any index i a set of all successors j satisfying the same equality as above and denote it 

as      . Then, set    collects indices i, which      is empty. Eq(8) represents the objective function 

involving standardized weight parameters    for different groups of territorial units. Notation used in 

mathematical model (Eq(1)-(8)) is summarized in Table 1. 

Input data related constraints 
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Constraints reflecting the hierarchy of territorial units 
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The objective function 
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where weight coefficients are standardized as follows      〈   〉 ∑        .  

Table 1: Mathematical model related notation 

Symbol Description Unit 

i       
p    P 

q   Q 
mi 
mi,p* 
LHVi 
LHVi,q* 
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indices of territorial units  

index determining data set for amount of waste generated 

index determining data set for lower heating value 

real amount of waste generated (result of calculation) for     
estimated amount of waste generated (available data) for          

real lower heating value (result of calculation) for     
estimated lower heating value (available data) for         

inaccuracy of amount of waste generated for          

positive part of inaccuracy of amount of waste generated for          

negative part of inaccuracy of amount of waste generated for          

absolute value of inaccuracy of amount of waste generated for          

inaccuracy of lower heating value for         

positive part of inaccuracy of lower heating value for         

negative part of inaccuracy of lower heating value for         

absolute value of inaccuracy of lower heating value for         

simulated error of the repeated measurements for RSW production         

simulated error of the repeated measurements for LHV,         

standardized weight for the data set p for estimated RSW production for     

standardized weight for the data set q for estimated LHV for      

standardized weight of territorial unit      
set of indices of territorial units immediately belonging to unit      

index i identifies territorial unit j that includes unit j i.e.         

set of indices i     such that      is a nonempty set 

[-] 

[-] 

[-] 

[t/y] 

[t/ y] 

[GJ/t] 

[GJ/t] 

[%] 

[%] 

[%] 

[%] 

[%] 

[%] 

[%] 

[%] 

[%] 

[%] 

[%]  

[-] 

[-] 

[-] 

[-] 

[-] 

4. Case study 

Application of the model is focused on the calculations within the Czech Republic, and therefore assumes 

the inputs of four levels with respect to the territorial units Czech Republic, that is the state - CR (NUTS 0, 

Nomenclature of Units for Territorial Statistics), regions (NUTS 3), districts (LAU 1, Local Administrative 

Units) and municipalities with extended powers (MWEP, without NUTS/LAU classification). In total there 

are 206 territorial units on the MWEP level.  

The data base available for the Czech Republic was used in the test calculation and results are presented 

in this paper. In this case study, there were considered two models for LHV and one data source for the 
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production m (see Figure 1). Publicly accessible database ISOH (Waste Management Information System) 

contains data on production, waste management and information concerning facilities for waste treatment, 

recovery and disposal in the Czech Republic since 2002. For the purposes of this case study, the historical 

data only from 2008 to 2012 were used as models for m, because just for this period the consistency of 

data processing was kept. Unlike data on production, no database collecting the data on LHV is available 

for given territory. In professional practice there is often an assumption that LHV is of value about 10 GJ/t, 

i.e. simply and rounded LHV = 10 GJ/t, which reflects current LHV values reported by Reimann (2012) for 

Europe. It should be emphasized that this value is not  good estimate for each the territorial area and also 

that it does not reflect the trends in the waste management, such as the waste separation increase 

affecting the LHV. Another LHV model (on the MWEP level) used in the study case is a model taking into 

account correlation between type of heating and waste composition reported in three particular MWEPs. 

Complex composition analyses were performed in these MWEPs in 2009 and 2010. Generally, the LHV 

determination is an important problem. Good example might be a study, Lin et al. (2013), which presented 

a description of solutions for calorific value of RSW calculation from several aspects, along with a 

comparison of different methods of determining the caloric content with respect to the composition and 

humidity of the waste. 

 

 

Figure 1: Data base available for the Czech Republic 

As explained above, there is no sufficient data base on LHV currently available in the Czech Republic and 

additionally the input data is only an estimate of the real value. Also the real values are seasonable 

dependent. Therefore, the stochastic approach employing the Monte Carlo methodology was used in the 

model for testing and for pilot calculations. The artificial "blurring" of the input data (denoted by δ) was 

implemented, wherein the optimization model can be solved repeatedly for different sets of input data set. 

This blurring is realized by randomly generated value from a pre-selected probability distribution where the 

probability distribution parameters are determined based on the expert analysis of the credibility of the 

original data. Implemented options for the probability distributions are for now as follows: a) Fixed value: δ 

= 0; b) normal distribution: δ ~ N(μ,ζ
2
); c) uniform distribution: δ ~ U(a,b). 

Practically, different scenarios are created when for the certain model value (e.g. LHV*=10) one scenario 

is generated with the value of LHV** = 10 + δ, where δ is a random number generated from the selected 

distribution, e.g. from normal with μ = 0 and ζ = 0.08LHV*. If the entry value is very reliable, the possibility 

of fixed data, i.e. no blurring, is selected. If the input data is quite reliable, the blurring value is generated 

from the normal distribution. If the entry value is more of general type of information (e.g. frequently used 

LHV = 10 GJ/t), it is preferable to use a value generated from a uniform distribution. 

In the future, it can be assumed that the m and LHV data base will increase, most likely in the form of local 

studies, or from waste treatment facilities. Therefore, it will be necessary to suitably combine these data 

sets into a single optimization calculation. Then, it is convenient to consider the different weights for each 

input data (see Eq(1)-(2)), due to a variety of meaningful values for different data sources. Alongside it is 

possible to detect errors of the individual models employing the detailed analysis and to further develop 

proposed model. 

By using ca. hundreds of Monte Carlo simulations, the variability of m and LHV in the respective areas can 

be observed, and thus, the sensitivity of inaccuracies on the resulting estimates can be detected. The 

average value, or the interval, for both of the parameters in the area can be determined. Figure 2 shows 

the results for the case of MWEP#2. Graph on the left side of the figure presents the variability of the 

results together with the estimate of the mean value and 95 % interval for point results for 500 simulations. 

The graph on the right side of the figure then provides another perspective of the results using the 

histogram of generated data. The input models values for this particular case of MWEP#2 were LHV1=10 
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GJ/t and LHV2=9,176 GJ/t. From the graph it can be concluded that in the range of the LHV value in 

MWEP#2 is 9,339±1.0875 GJ/t. Analogous information for the m in MWEP#2 is presented on Figure 3. 

Presentation of the results using a histogram, instead of a single value, is an important benefit of this tool, 

since in the reality it is not possible to achieve the constant value of m and homogeneous LHV, as already 

mentioned by Putna et al. (2014). Production and LHV also change during the year, and therefore, it is 

necessary to calculate the predictions with the variability of both parameters. Therefore, another possible 

extension of this tool is calculation performed on a monthly basis. 

 

 

Figure 2: Simulations output – LHV estimation for MWEP#2  

 

Figure 3: Simulations output – RSW mass production estimation for MWEP#2 

 

Figure 4: Comparison of credibility of the models for input data for RSW production and LHV in MWEP#2  
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Finally, the implementation offers also the possibility to compare the credibility of the models that provide 

the input data for m and LHV in terms of the sum of inaccuracies (see Eq(5)-(6)). The top graph in Figure 4 

presents the evolution of the sum of inaccuracies ( ̂) in dependence on the weights reflecting the credibility 

of individual models (v), for combinations including production models and LHV models within MWEP#2. 

The bottom graph in Figure 4 presents the models (v) weights ratio (the weights are standardized - see 

assumptions for Eq(1)-(2)). For the sake of clarity the weights for RSW production models and LHV 

models were put into the same graph separated by the line. 

Apart from the total error we can also observe the proportion of individual models to a total error (Figure 4 

– top). By detailed analysis, it is possible to detect errors among different models from the perspective of a 

specific locality. These outputs can serve to improve the estimation of weights for each model. 

5. Conclusions 

This article, building on a study Putna et al. (2014), introduced current computational model and its results 

of the practical implementation of tool for predicting RSW production and LHV in the Czech Republic. 

Despite of a limited number of input data, the results provide information about the likely state of the RSW 

production and LHV in relevant territorial units. This information represents the valuable inputs for the 

design process of new waste management facilities. The knowledge of the RSW quantity and LHV are 

required already in the design and concept phase of WTE design, which is the leading technology in 

effective waste management. The concept described in the study Putna et al. (2014) was further extended 

with practical solutions to the implementation and with respect to the quantity of currently available data. 

Further development of the tool is connected to the growing data base that will contribute to more accurate 

results. Other possible extensions of the tool are the calculations on a monthly basis. Input models can be 

extended to the socio-economic factors and their influence on the parameters of RSW in relevant area. 
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