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Quality control of industrial products has become essential in modern industry as it aims to satisfy customer 
demands. Therefore it requires fast and simple procedures in order to ensure efficient on-line process 
monitoring and detect abnormal deviation from certain product specifications. In this work, commercial 
detergent quality control was performed by means of (i) Fourier Transform Infra-Red (FT-IR) spectroscopy and 
(ii) Partial Least Square Regression (PLS-R) that allows for prediction from multivariate spectra. Sodium 
hydroxide and non-ionic surfactant concentrations were considered for the calibration PLS-R model. Results 
demonstrated excellent predictive performance of the PLS-R model. In addition, its robustness was evaluated 
by mimicking a fault in the process, in this case a deviation of anionic surfactant concentration. It was found 
that a Qx statistic can be introduced with the purpose to assess whether sodium hydroxide and non-ionic 
surfactant concentration are correctly estimated in presence of external interference. 

1. Introduction 

Commercial hard surfaces detergents are a complex blend composed by different chemical species, whose 
quality strongly depends on the relative proportions. Quality control is usually performed on the end-product at 
the completion of the process with off-line conventional analytical techniques (e.g. chromatography) that 
introduce time delay and consequently reduce the effectiveness of quality control. Indeed, in case the product 
does not meet certain specifications, it has to be reprocessed, implying an increase of cost and time waste. 
Thus, for the analysis and control of critical quality variables (i.e. the compounds proportions) during the 
manufacturing process, real time analyzers are required. For the case at hand, a proper experimental tool 
might be the attenuated total reflectance (ATR) coupled with Fourier transform infrared (FTIR) spectrometer 
(Stuart, 2004). This is an innovative, non-destructive analytical technique, capable of measuring in very fast 
times aqueous samples, characterizing materials in a really efficient way and that are well suited for on-line 
measurements. Nevertheless, because of the large amount of spectral information, interpretation and 
correlation of the collected spectra with quality variables is a challenging task. Therefore, multivariate 
approaches represent a powerful tool for data analysis and compression.  
In this work, we tackle the issue of the on-line monitoring of detergent mass production through multivariate 
statistical process control approach applied on FTIR measurements of detergent samples. In particular, Partial 
Least Squares Regression (PLS-R) is considered as the best multivariate technique for the quantitative 
analysis of spectroscopic data because it enables to overcome common problems such as collinearity, band 
overlaps and interactions. It is here implemented for the determination of the concentration of some selected 
compounds (sodium hydroxide and non-ionic surfactant). For this purpose, two different sets of detergent 
samples are designed by jointly varying these two compounds: (i) a training set used to calibrate the PLS-R 
model and (ii) a validation set to test the PLS-R model. Moreover, small variations of the other components in 
the blend were introduced in order to mimic typical fluctuations unavoidably present in the standard mass 
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production. These two samples sets respect the standard of the end-product and hereafter they will be 
referred as normal operating conditions (NOC) and defined as in-control samples. Different works in literature 
usually determine the best calibration PLS-R model for compounds concentration in detergents formulations 
(Rohman et al., 2011) without considering the possible presence of external interferences that could worsen 
its prediction ability. In fact, since the PLS-R model is built only on a limited number of compounds, it could be 
no longer consistent when the system is out-of-control, that is in presence of large deviations of other 
compounds not taken into account in the PLS-R model calibration.  
Here, a Qx statistic was also proposed to assess the concentration prediction reliability when a fault occurs, 
i.e. a perturbation from the NOC. To this aim the fault was simulated considering (iii) an out-of-control samples 
set where anionic surfactant concentration is higher than the reference value defined for the NOC. Eventually, 
the estimation of the Qx statistic greatly improves the effectiveness of quality monitoring during detergents 
manufacturing process because it will be capable of classifying samples as in-control or out-of-control. 

2. Experimental 

2.1 Samples sets 

The detergents used for the preparation were commercial formulations used for the mass production. Three 
different samples sets were considered and their Infrared spectra are reported in Figure 1: a training set (34 
samples) used to develop the PLS model (Figure 1.a) and a validation set (6 samples) to test prediction ability 
(Figure 1.b). In both these sets, sodium hydroxide and non-ionic surfactant concentration vary (± 10 % of the 
average nominal values), while anionic surfactant concentration was kept at low level. In addition, a further set 
was generated which is an out-of-control test set (12 samples), characterized by anionic surfactant 
concentration 22 % higher than the NOC value (Figure 1.c), while variations of sodium hydroxide and non-
ionic surfactant concentration for these samples were the same designed for the in-control samples. 
Concentrations of other compounds (sodium carbonate, fatty acid, pH buffer, chelating agents, anphoteric 
surfactant, ethanol, perfume, polymer additive) were slightly varied in all the samples in order to simulate 
industrial process fluctuations. 

2.2 Infrared measurements 

The infrared measurements were performed at the Procter & Gamble Brussels Innovation Center (BIC) in on a 
Thermo Scientific Nicolet™iS™10 FT-IR Spectrometer with a deuterated triglycine sulfate (DTGS) detector 
and a KBr/Ge mid-infrared optimized beamsplitter. The spectra cover the range from 3000 to 800 cm-1 with a 
wavenumber resolution equal to 1.928 cm-1. 

 

Figure 1. Infrared spectra for (a) training (34 samples), (b) validation (6 samples) and (c) out-of-control (12 
samples) 

Experiments were carried out by jointly varying the non-ionic surfactant and the sodium hydroxide according to 
an I-optimal design (Montgomery, 2008). The experimental conditions are arranged into a response matrix 
Y(I×M) where M and I refer to the number of compounds (for the case at hand M=2) and the number of 
samples, respectively. The corresponding experimental spectra are assembled into a matrix X(I×J) consisting of 
the I experimental infrared spectra collected at the different J wavenumbers.   
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3. Methods  

3.1 Model calibration 

Given a predictor matrix X(I×J) and a response matrix Y(I×M) the PLS algorithm projects X and Y onto a low-
dimensional space defined by a small number of latent variables A (Li et al., 2010) as expressed in equations 
(1) and (2) ୍܆×୎ = ୅×୍܂ ∙ ௃	஺×܂۾ + ۳୍×୎  (1) 

୑×୍܇ = ୅×୍܂ ∙ ெ	஺×ࢀࡽ + ۴୍×୑  (2) 

Where A « J is the number of the latent variables that allow for describing adequately the experimental data, T 
is the orthonormal score matrix, P and Q are the loading matrices for X and Y respectively. E and F are the 
residuals matrices of X and Y. In general, X and Y are usually pre-processed and scaled to unity variance and 
mean centred. The basic idea in PLS-R is that the covariance between X and Y should be maximized and 
there are several ways to solve the maximum optimization problem and compute PLS model matrices P and 
Q. In this work, the SIMPLS algorithm developed by De Jong (1993) was used since it appears faster and 
easier to interpret than nonlinear iterative partial least-squares one (NIPALS). PLS can be implemented to 
infer a single response variable (PLS1) or multiple response variables (PLS2). Here, PLS2 was adopted as it 
seemed more appropriate for process monitoring. This sounds reasonable since the joint regression of 
multiple response variables should provide more information than the ones collected by building M different 
independent PLS models (Li et al., 2010).  

3.2 Quality variables prediction 

PLS method can determine the i-th sample concentration yi from the corresponding spectrum xi (MacGregor 
et al., 1994) as expressed in (3) and (4).  ࢏ܡଵ×୑ = ଵ×୎࢏࢞ ∙ ۰௃×	ெ  (3) 

where ۰୎×୑ = ୎×୅܀ ∙  ெ (4)	஺×܂ۿ

In equations (3) and (4) R is the pseudo-inverse of the P matrix and B is the regression coefficients matrix 
estimated through the matrices R and QT. 

3.3 PLS-based statistical control 

Besides the quantitative estimation of the compounds concentration, here a PLS-based monitoring was 
implemented (Kourti, 2005). In particular, the detection of deviations from nominal conditions and, as a 
consequence, the accuracy of the concentration prediction were performed by resorting to the Qx statistic (Li 
et al., 2010). Such statistic is calculated for the i-th sample spectrum according to the Equation 5. Q୶,୧ = ࢏࢞‖ − ଙෝ࢞ ‖૛ = ฮ࢏࢞ ∙ ሺ۷ − ۾ ∙ ሻฮ૛  (5) Q୶,୪୧୫܂܀ = g ∙ ߯௛,ఈଶ                 (6)                            
 
Where ࢞ଙෝ  is the the i-th spectrum as predicted by the PLS model considering the first A latent variables. Under 
NOC, the Qx statistic follows a chi-square distribution with h degrees freedom χ2

h, and its threshold value is 
calculated through equation (6), where α is the significance level (usually 5 %), g and h depend on the mean 
and variance of the Qx calculated for the calibration samples (Nomikos et al., 1995). When Qx,i > Qx,lim the 
process behavior is supposed to be out-of-control.  

4. Results and discussion 

PLS model was built on the training set samples represented by the experimental matrix X(34×1142) and 
concentration matrix Y(34×2). Model matrices (P, Q and B) are evaluated using SIMPLS algorithm. For the case 
at hand, six latent variables were chosen as the variance explained for both X and Y achieves 92 and 97 % 
respectively. The sodium hydroxide and non-ionic surfactant concentration (yi) for the three different samples 
sets (training, validation and out-of-control test sets) were calculated according to equation (3).  

1551



The PLS2 model here developed demonstrates high predictive performance achieving R2 values of 97.4 and 
97.3 % for sodium hydroxide and non ionic surfactant concentration estimation, respectively. Similarly, the 
Root Mean Squared Error of Calibration (RMSEC) values are quite low and equal to 0.01 and 0.106. For the 
validation set the Root Mean Squared Error of Prediction (RMSEP) is equal to 0.0187 and 0.11.  

 

Figure 2. Experimental vs predicted concentration of sodium hydroxide (a) and non-ionic surfactant (b). White 
circles, gray squares and black triangles represent training, validation and out-of-control samples, respectively 

The experimental vs predicted concentrations (arbitrary units) are reported in Figure 2 for the sodium 
hydroxide concentration (Figure 2.a) and non ionic surfactant concentration (Figure 2.b). It can be seen that 
the training samples (white circles) and the validation data (gray squares) are well predicted for both sodium 
hydroxide and non ionic surfactant. On the other hand, it was observed that the out-of-control samples, when 
projected in the PLS model (black triangles in Figures 2), cannot be accurately predicted. In particular, the 
sodium hydroxide concentration was underestimated, whereas the non-ionic surfactant was slightly 
overestimated. The explanation of such lack of fit seems obvious: possible variations of anionic surfactant 
concentration were not included into the PLS-R model calibration. As a consequence, the model is not suited 
to predict concentrations corresponding to out-of-control samples. 

 

Figure 3. Q statistic evaluated for samples belonging to training (white circles), validation (gray squares) and 
out-of-control sets (black triangles), respectively. The dashed-dotted line represents the Q limit 

For these reasons, a PLS-based monitoring is crucial. It can be mentioned that multivariate statistical control 
for detergent production has already been performed by means of PCA (Taris et al., 2014): they proposed an 
elliptical operating region in the T2-Q control chart to detect out-of-control samples. Nevertheless, the goal of 
this work is the further quantification of quality variables and the assessment of the model robustness and 
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precision. Therefore, the Qx statistic for each sample and the Qx,lim were calculated according to Equation (5) 
and (6) and they are reported in Figure 3. It can be observed that samples belonging to training and validation 
sets assume Qx values smaller than the threshold. Thus, they are correctly classified as in-control, that is the 
PLS-R model is supposed to correctly predict the quality variables. On the other hand, the out-of-control 
samples exceed the limit and anomalous conditions are detected. In this case, the PLS-R model cannot be 
used to infer the compound concentrations.  
The efficiency of the Qx statistic is further evaluated by means of the Receiver Operating Characteristic (ROC) 
curves (Scheipers et al., 2005). These are two-dimensional graphs of the true positive rates (TPs; i.e., 
successes) versus the false positive rates (FPs; i.e., false alarms). The area under the ROC curve is the so-
called AUC index, which is a scalar measure of the overall performance of a classifier, averaging across 
different thresholds that can be used to generate a classifier. In general, a model with a larger AUC is 
preferred to a model with a smaller one. The AUC of a random classifier is 0.5, whereas AUC=1 corresponds 
to perfect classification. Here, two ROC curves were determined: (i) training set was compared with out-of-
control set and (ii) training with validation set and depicted in Figure 4. The ideal scenario would be: (i) an 
AUC1 value as close as possible to 1, when comparing the training set with out-of-control set (thus meaning a 
perfect separation between the two classes) and (ii) an AUC2 value close to 0.5 when comparing the training 
set with the validation set. The obtained AUC values for cases (i) and (ii) were AUC1=0.989 and AUC2=0.77. 
This confirms the capability of the Qx statistic to distinguish the in-control from the out-of-control samples.  

 

Figure 4. Roc curves resulting from the comparison of the training with out-of-control data (solid line) and the 
training with validation data (dashed line) for the Qx statistic. 

The proposed strategy for the on-line quality monitoring of commercial detergents is summarized in Figure 5: 
new spectra collected during the manufacturing process are projected onto the PLS subspace (previously 
calibrated using in-control samples), Qx statistic is evaluated for each spectrum and compared to the threshold 
value. If the new sample complies with in-control samples, then prediction of quality variable can be carried 
out.  
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Figure 5. Flow diagram to be implemented during commercial detergent manufacturing process for quality 
monitoring. 

5. Conclusions 

Fourier Transform Infrared Spectroscopy combined with multivariate statistical analysis techniques were 
exploited for real time monitoring of the quality of hard surface detergents. The proposed strategy involves the 
development of a data-driven PLS regression model for the quantification of some quality variables and the 
employment of the Qx statistic as a diagnostic tool able to find out the samples deviating from normal process 
behavior. The goal is twofold: the detection of anomalous conditions and then prediction of the quality 
variables. For this purpose concentration of sodium hydroxide and non-ionic surfactant in the blend was 
estimated and two sets of experimental data were taken into account: (i) a set of data following normal 
operating conditions and used for the calibration and validation model and (ii) a set of data collected far from 
the NOC that mimic the occurrence of a process fault during the manufacturing process.  
In this work, Qx statistic was demonstrated as an effective tool to clearly detect the out-of-control samples 
whose quality variables cannot be determined through PLS model. Furthermore, it was found out that PLS 
model correctly estimated the compounds concentration under nominal operating conditions.  
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