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For the continuous manufacturing processes, the integrated optimization for production planning, scheduling, 
and dynamic optimization usually leads to profit improvement and better overall performance. The challenge is 
that the integrated optimization is often a large scale problem which is difficult to solve. To deal with the 
computational difficulty of the integrated problem, we first propose a flexible recipe method which decomposes 
the integrated problem into an integrated planning and scheduling problem with flexible recipes and a set of 
dynamic optimization problems. To further enhance the computational efficiency, a bi-level decomposition 
algorithm is then applied to the integrated planning and scheduling problem with flexible recipes. The 
computational efficiency of the proposed algorithms is demonstrated through case studies of methyl 
methacrylate (MMA) polymerization processes. 

1. Introduction 

Planning, scheduling, and dynamic optimization of chemical processes are highly interconnected (Grossmann, 
2005). Though these three problems can be solved in a sequential way, their integration usually results in a 
better overall result (Chu and You, 2013a). Thus, the integration of planning, scheduling, and dynamic 
optimization has been an active research topic recently (Biegler et al., 2014). 
Most previous studies concentrate only on parts of the integrated problem. Some work focuses on the 
integrated planning and scheduling (Zamarripa et al., 2013), for example, for continuous multiproduct plants 
(Erdirik-Dogan and Grossmann, 2006), for parallel batch process (Chu et al., 2015), and for general process 
networks (Yue and You, 2013). Another group of literature concentrates on the integration of scheduling and 
dynamic optimization for continuous reactors (Chu and You, 2012), for parallel continuous processes (Flores-
Tlacuahuac and Grossmann, 2010), and for batch processes (Nie et al., 2012). Recently, a few advances 
have been made on integrating the process operations and dynamic optimization problems, for both batch 
processes (Chu and You, 2014a) and for the continuous processes. In a recent by Gutierrez-Limon et al. 
(2014), they proposed the structure of the integrated problem while in our work we focus on the efficient 
solution method to solve the integrated problem. The full space problem integrating planning, scheduling, and 
dynamic optimization could be computationally challenging (Biegler, 2007) due to the presence of integer 
variables and dynamic models (Chu and You, 2014b). In this paper, we propose efficient solution approaches 
to solve the integrated process operations and dynamic optimization problem for continuous processes. 
In this work, we formulate a mixed-integer dynamic optimization (MIDO) problem for the integrated planning, 
scheduling, and dynamic optimization. The MIDO problem is then reformulated as a full space mixed-integer 
nonlinear program (MINLP) problem by discretizing the differential equations (Chu and You, 2013b). We then 
propose an efficient flexible recipe method to enhance the computational efficiency. The flexible recipe 
method decomposes the full space MINLP problem into a set of dynamic optimization problems and an outer 
planning and scheduling problem. The integrated planning and scheduling problem with flexible recipes is a 
mixed-integer linear programming (MILP) problem which is easier to solve than the original full space MINLP 
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problem. To further improve the computational efficiency, a bi-level decomposition algorithm is then applied to 
the integrated planning and scheduling problem with flexible recipes. The bi-level decomposition algorithm 
decomposes the MILP problem into an upper level planning problem and a lower level detailed scheduling 
problem. The algorithm solves the upper and lower level problems iteratively. At each iteration, it adds integer 
and logic cuts to the upper level problem, until the pre-determined stopping condition is met. 
To demonstrate the applicability of the proposed integration framework and the solution methods, we consider 
a case study for a methyl methacrylate (MMA) polymerization process (Congalidis et al., 1989). The results 
demonstrate that the proposed methods reduce the computational time by more than two orders of magnitude 
compared to the approach of solving the full space integrated problem directly. 

2. Model formulation 

 
Figure 1: Illustrative example of Planning horizon, planning periods, and time slots. 
 
We study a multi-product continuous manufacturing process which manufactures a set of products over the 
planning horizon. The planning horizon is divided into several planning periods. As shown in Figure 1, the total 
number of the planning periods is denoted by np. In each period there are ns time slots. Each time slot consists 
of a production period and a transition period. Production assignments of each planning period are determined 
by the planning model according to order demands. The production sequence and the duration of each time 
slot in a planning period are determined by the scheduling model. The dynamic optimization problem is solved 
to determine the transition time and the transition cost between two products. We propose the full space 
MINLP model as follows, denoted as (Intergration_Problem): 
 
(Intergration_Problem) 
                     max PROFIT (1) 
s.t.                Planning model (2) 
                     Scheduling model (3) 
                     Dynamic optimization model (4) 
 
The objective is to maximize the total profit which is the revenue minus the inventory cost, the production cost, 
and the transition cost. The aim of planning is divided into 3 parts: first, to determine the production 
assignment of manufacturing processes over a long time horizon; second, to calculate the inventory levels for 
each period, third, to ensure that the sale of one product is greater than or equal to the demand of that product 
in each time period. As shown in Figure 2, the real inventory cost in one planning period is shaped by the 
shadow area which is a polygon. Unlike previous work (Erdirik-Dogan and Grossmann, 2006, 2008) using the 
rectangle to estimate the inventory cost, the trapezoid (CDEB) is used to approximate the inventory cost. 

 
Figure 2: Trapezoid-shaped inventory cost in a planning period 
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Scheduling is used to determine the detailed production sequence, task assignment, processing time, 
resource allocation. The scheduling model also defines the time relation. The symmetry breaking constraints 
are also introduced into the scheduling model to simplify the solution space (Yue and You, 2013). Dynamic 
optimization determines the optimal trajectories of process inputs and state variables during the transitions 
between different productions. The dynamic optimization models are linked with the planning and scheduling 
model via the initial conditions of the state variables and the final value of the outputs. 

3. Flexible recipe method 

The direct solution approach is time consuming because of the complexity of the full space MINLP model, 
although the standalone planning, scheduling, and dynamic optimization subproblems are relatively easier to 
solve. To overcome the computational challenge of solving the full space problem, we propose flexible recipe 
method based on the structure of the full space MINLP problem.  
From the structure of the model formulation provided in section 2, we can see that if the planning and the 
scheduling decision variables are treated as given parameters, transition sequence is then determined. In that 
case, the dynamic optimization problem for one transition process is solved independently from that for 
another transition process. The main idea of flexible recipe method is to replace the detailed dynamic 
optimization problems with the candidate flexible recipe collections.  
The first step to build the candidate flexible recipe collection is determining the feasible time range of each 
possible transition process. We first find the minimum transition time in each transition by solving the dynamic 
optimization problem with the objective to minimize the transition time. After the minimum transition time is 
obtained, we then need to determine the location of other transition times. The interval step size between two 
adjacent transition time points and the total number of the transition times are set as constants. After all the 
transition time points are decided, the corresponding minimum transition costs are then calculated by solving 
the corresponding optimization problems. In this way, we obtain a set of discrete transition time and cost pairs, 
regarded as the candidate flexible recipe collections. 

 
Figure 3: Structure of the flexible recipe method for the integrated problem 
 
The diagram of the flexible recipe method is summarized in Figure 3. This method consists of the integrated 
planning and scheduling problem with flexible recipes and a set of dynamic optimization problems. First, the 
dynamic optimization problems are solved offline to build the flexible recipe collections. The collections are 
then incorporated into the integrated planning and scheduling problem. Only the integrated planning and 
scheduling problem with flexible recipes is then solved directly. Since the integrated planning and scheduling 
problem with the flexible recipes is an MILP problem, it can be solved more efficiently than the full-space 
MINLP problem. 
The flexible recipe problem is denoted as (Flexible_Recipe), shown as follows: 
 
(Flexible_Recipe) 
                    max PROFIT (5) 
s.t.                Planning model (6) 
                     Scheduling model (7) 
                     Candidate flexible recipe collections (8) 
                     Linking equations  (9) 
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4. Bi-level decomposition method 

In this section, we apply a bi-level decomposition algorithm to improve the computational efficiency of solving 
the MILP problem for integrated planning and scheduling with flexible recipes (Iyer and Grossmann, 1998). 
This algorithm decomposes the MILP problem into an upper level planning problem and a lower level 
scheduling problem with flexible recipes. 
The main idea of formulating the upper level problem is to solve the planning problem first without fully 
considering the scheduling problem and the transition problem, thus the upper level problem is a relaxation 
from the original MILP model. Consequently, it generates an upper bound of the total profit. The upper level 
problem is denoted as (Upper_Level), shown as follows: 
 
(Upper_Level) 
                     max PROFIT_UP (10) 
s.t.                Relaxed planning model (11) 
                     Candidate flexible recipe collections (12) 
                     Integer and logic cuts (if it is not the first iteration) (13) 
 
The lower level problem exploits the solution from the upper level problem. In the lower level, the original MILP 
problem is solved by only searching the subset of the production assignment determined by the upper level 
problem. Since the lower level problem only gets optimal solution within a confined feasible region at each 
iteration, the solution to the lower level problem at each iteration provides a lower bound of the total profit. The 
lower level problem is denoted as (Lower_Level), shown as follows: 
 
(Lower_Level) 
                     max PROFIT_LOW (14) 
s.t.                Same constraints from “Flexible_Recipe” problem (15) 
                     Constraints which confines the feasible region (16) 
 
The upper lever and the lower level problems are solved iteratively until the gap between the upper bound and 
the lower bound drops under a pre-defined optimality tolerance. To hasten the convergence rate of upper and 
lower bounds, integer cuts and logic cuts are added into the upper level problem at each iteration, shown as 
follows. The first cut (17) is used to exclude previous feasible solutions from the upper-level problem. The 
second cut (18) is used to exclude the subset of the previous feasible solutions from the upper-level problem. 
The third cut (19) is used to exclude the superset of the feasible solutions from previous iteration. The capacity 
logic cut (20) exploits the solutions of the previous lower level problems to exclude those solutions whose total 
production time and transition time exceed the length of planning horizon. 
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The flow chart of the bi-level decomposition algorithm is shown in Figure 4: 

 
Figure 4: Flow chart for the bi-level decomposition algorithm 
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5. Case study 

To demonstrate the proposed modelling and solution frameworks, we consider a case study for a methyl 
methacrylate (MMA) polymerization process which is a nonlinear free radical polymerization using azobisiso-
butyronitrile as the initiator and toluene as the solvent. The dynamic optimization model for the MMA 
polymerization process is described by a set of differential equations, where Cm is the concentration of the 
monomer, CI is the concentration of the initiator, D0 is the molar concentration of the dead chains, and D1 is 
the mass concentration of the dead chains (Congalidis et al., 1989). 
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We first consider a small scale problem which includes 3 products. The entire planning horizon is divided into 
3 planning periods. The time length of each planning period is 24 hours. The second case study is a large 
scale problem which contains 5 products. The entire planning horizon is 1 month which is separated into 4 
planning periods. The time length of each planning period is 168 hours. 
 
Table 1: Comparison of the different methods for different case studies 

 Small scale case study Large scale case study 

Method Full space Flexible recipe Bi-level Full space Flexible recipe Bi-level 

Type MINLP MILP MILP MINLP MILP MILP 

Bin. Var. 68 900 909 234 6,520 6,540 

Con. Var. 27,284 1,048 1,117 64,874 6,928 7,063 

Constraints 28,874 261 365 68,736 971 2,548 

Optimizer BARON 12 CPLEX 12 CPLEX 12 BARON 12 CPLEX 12 CPLEX 12 

Obj.($) 1,325.42 1,387.41 1,387.41 Infeasible 51,151.82 51,151.82 

CPU (s) 36,000 0.35 0.34 36,000 1,020.96 202.7 

Iteration ─ ─ 3 ─ ─ 46 

Gap (%) 53.09% 0 0 - 0 0 

 
In Table 1, the solution and model statistics for both the small scale and large scale problems are listed. For 
the small case study, the full space problem is solved by a global optimizer, BARON 12. However, BARON 12 
fails to converge to a global optimal solution within 36,000 CPUs. The relative gap is 53.09%. The objective by 
BARON 12 is $1,325.42, which cannot be guaranteed to be a global optimal solution because of the existing 
relative gap. Both the integrated planning and scheduling problem with flexible recipes and the bi-level 
decomposition method yield the same solution. The objective of those two methods is $1,387.41, which is 
obtained within 0.5 second for both methods. The optimality gaps are set as zero.  
For the large case study, the full space method by BARON 12 fails to obtain a feasible solution within a 
computational time limit 36,000 CPUs. The flexible recipe method uses 1,020.96 CPUs to obtain the optimal 
solution. The bi-level decomposition method exhibits its superiority in the large scale problem. It only uses 
202.7 seconds to obtain the same optimal solution as the flexible recipe method does.  
For both case studies, the number of constraints of the full space method is at least 1 order of magnitude 
larger than that of the other two methods; the number of continuous variables of the full space method is 1 
order of magnitude larger than that of the other two methods; the number of binary variables of either the 
flexible recipe method or the bi-level decomposition method is larger than that of full space method due to the 
task recipe selection. The total computational time of the bi-level decomposition method is the sum of the 
computational time from both the upper and the lower level problems. 
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6. Conclusions 

Integration of planning, scheduling, and dynamic optimization for continuous manufacturing processes is of 
great importance, because it could lead to a better overall performance. In this work we proposed a full space 
MINLP model for the integrated planning, scheduling, and dynamic optimization problem of multi-product 
continuous manufacturing process. To address the computational complexity of the full space MINLP problem, 
we proposed an efficient flexible recipe method, which decomposed the full space model into an integrated 
planning and scheduling problem with flexible recipes, and a number of dynamic optimization problems for 
generating the flexible recipe collections. The bi-level decomposition algorithm was then used to further 
improve the computational efficiency for solving the integrated planning and scheduling problem with flexible 
recipes. The algorithm solved the upper and the lower level problems alternately. The proposed methods 
reduced the computational time by more than 2 orders of magnitude compared with directly solving the full 
space integrated problem. 
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