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Models are the starting point for any computation-based engineering activity and thus errors in the 
construction - instantiation - coding of models are beyond the most expensive ones.  Any improvement of this 
situation requires a systematic approach that enables automatic generation of coded models. 
We discuss on a simple example the systematic construction of process models based on system theoretical 
concepts that gives us the possibility to guarantee the completness and structural correctness of the resulting 
equations. Whilst we explain the basic ideas on a very simple example, the method expands seamless to very 
large scale systems. 
As part of the discussion we shall also explore the link to the behaviour theory as it was defined in the 
mathematical system theory community. This then provides a clear basis for the mathematical analysis in the 
abstract signal space whilst having a clear physical interpretation in the thermodynamic and fluid-dynamic 
state space. 

1. Goals and Objectives 

Models are essential, they are the core of computer-aided engineering. Having them right is essential and any 
fault in their definition is expensive, as the model is at the beginning of any of the computational processes. 
The projects in computer-aided modelling in our group thus focus on defining proper process models, where 
proper implies structurally sound, differential index 0 or 1, no obsolete equation or variable and no coding and 
transcript errors. Thus we aim at tools that can construct process models meeting these goals and make it 
easy and quick to generate and modify process models. 

2. Systems View 

The term ''behaviour'' is often used when explaining what a model is: The model mimics the behaviour of the 
system, for example. This though asks the question on what ''behaviour'' is, how it is defined. The term is 
intuitively interpreted as: a model shows the ''same'' response than the modelled system when excited the 
same way. So it kind of describes an input/output behaviour: given input, the output of the model is close to 
the (measured/observed) output of the modelled object, which closely fits the definition of the term model in 
the literature of philosophy of science, for example Apostel (1960). Mathematical system theory defines a 
domain called ''Behaviour Theory” with Willems being the centre person. A collection of his papers can be 
found on the webpage (Willems, 2014). Willems defines behaviour by “The behaviour B of a model is 
constructed as a subset of the universe of conceivable events U , thus B ⊆ U .” 
The definition is illustrated with the ideal gas law : p V = n R T. The universe is every combination of values U 
:= [0, ∞) 4 ; so the model lives in this universe. The behaviour is B := (p, V , n, T ) ∈ [0, ∞) 4 | p V = n R T. The 
behaviour splits the universe of conceivable events into two pars: one that DEFINES the behaviour and the 
other which defines what is NOT part of the behaviour. If we solve for any of the variables we have a manifold 
description of the system. Willems defines a signal space in which the model ''operates''. One is then tempted 
to talk about inputs and outputs in the signal space without being very specific on what is an input and what an 
output. Physics on the other hand provides a very clear view on inputs, outputs and states, which we will use 
to further refine providing a convenient structure for the representation of physical / biological systems.  We 
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view the process we model as one part of the universe with the other being its environment into which it is 
embedded (Preisig, 2010 and 2014) .   
The physical system lives in the frame of time and space. The plant occupies a piece of the universe's space 
and in order to describe its behaviour we split it into small er part, usually motivated by arguments being 
functional, like functional units, or mechanical properties such as different phase. The individual parts 
exchange extensive quantity as a consequence of a difference in the state. Overall the plant is driven as a 
function of a difference in the intensive properties of the reservoirs making up the environment of the plant. So 
flow of extensive quantity is driven by the difference in the effort variable, which are the conjugates to the 
potentials. As rightly is observed by Willems (1989), flow is possible in either direction, which makes it difficult 
to use the term input for a system, if one uses the intuitive view that flow into the a space is an input and an 
outflow is an output. This link does not provide us with the right picture. The change of the system is indeed 
driven by the conditions at its boundaries, globally the environment. There is though another element affecting 
the dynamics, namely the system-internal dynamics: transposition of one extensive quantity into another one.  
This mechanism models phase changes, chemical and biological reactions and conversion of different forms 
of energy to mention the main ones. The art of generating the model is primarily the definition of the basic 
breakdown of the space into smaller partitions, which each is described as a physical system having the 
capacity of storing extensive quantity and exchange such with its neighbours due to the difference in the state 
of the two neighbours and internal imbalance of its constituents. It is thus the granularity of the decomposition 
that determines the resolution with which the dynamic behaviour is being described by the model. Defining the 
 volume elements that act as capacities for the conserved extensive quantities as nodes and the connections 
as arcs which have a defined directionality, one has as a base description of the containment a directed graph. 
Two elements describe the directed graph, namely the list of nodes and a list of arcs, whereby the latter is a 
list of tuples with source node and sink node in each tuple. 
What is in this containment we describe with tokens (Preisig, 2015). The tokens in dynamic systems give raise 
for the definition of state being the conserved quantities in each node. 

3. The Grand Scheme 

Based on these considerations, we define a set of signals: state – the conserved extensive quantities, 
transport of extensive quantity, transposition of extensive quantity, and secondary states, which are state-
dependent quantities being used to represent the transport and the transposition. The latter are the least 
obvious class of signals except that the effort variables are apparently members of this class. Since the effort 
variables are linked to the state through the equations of state, the latter are part of the relations that come to 
provide the necessary link between the state and the secondary state. From this point of view it also becomes 
evident that the definition of the intensive properties is part ot the same set of equations and the link between 
mass and volume plays an important role. This brings geometry into the picture, which is provides the 
necessary link between mass, shape and volume of the system. The result of these considerations is 
summarised in Figure 1. 

Figure 1: The Grand Scheme 
– the conservation principles 
are linear a reflection of the 
superposition that applies to 
the conserved quantities in 
the capacities. The F matrix 
is the incidence matrix of the 
directed graph of the network 
representing the 
containment. The N matrix is 
the transposition matrix, for 
reactions this is the 
stoichiometric matrix. The U-
shaped block on the right 

represents the second part, namely the transport modelling the transfer between capacities with the flows of 
extensive quantities being marked by a hat, and the transposition representation the capacity-internal 
dynamics marked by a tilde, here the extent of reaction ξ. Finally the centre box represents the link between 
the secondary states y and the primary state x. Here the material properties dominate, thus the equation of 
state supplemented by geometry and definition of intensive quantities.
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4. Model Definition 

The construction of the model, is done in counter-direction of the arrows starting with the state. It is obtained 
by integrating the differential balances, the change in the state per unit time. The incidence matrix is 
representing the structure of the network (Preisig, 2010, 2014)  and the transposition matrix provides the ratio 
of the transposition. For reactions that is the stoichiometric matrix, for phase changes it is unity. The ''input'' to 
the balances are the transport of extensive quantity and the transposition. Thus the next stage in the definition 
is two fold, namely the definition of the transport equations and the definition of the transpositions, usually the 
kinetics. These two set of definitions are implicitly defining the set of secondary states that are required. The 
secondary states must be the result of a mapping from the fundamental state, the extensive quantities. Whilst 
this transformations are often not analytically available, they must exist and solvable by numerical methods. It 
should be noted that this class of equations includes implicit equations. Notably it is the temperature which 
appears usually in an implicit equation. 

5. Illustrative Example 

We use a simple example to demonstrate the approach to construct a complete proper process model. The 
motivation to choose a simple example is to provide an example that most can relate to and that is not 
resulting in an excessive set of equations. 
 

 
The plant being modelled is a jacketed ideally stirred tank 
reactor, a classic. The assumptions for generating the 
process model are rigorous: (i) only the liquid phase is 
modelled – the gas phase is neglected (ii) ideally stirred 
liquid phase. (iii) Tank is initially charged with a load of fluid. 
(iv) The jacket is ideally mixed and connected to a source 
and ejecting fluid to a sink. Both not being further specified. 
(v) No heat and material losses. 
 
 
 

 
 
We use a graphical approach to generating the model structure (Preisig, 2014). The resulting topology is 
shown in Figure 3. 
 

 

Figure 3: A simple topology of a jacketed batch reactor modelled as an ideally stirred tank reactor for the liquid 
phase, with no gas phase and a uniform jacket. 

In the tank a reaction is going on, namely 2 A → B. The topology is extremely simple, which reflects into the 
incidence matrix of the graph. For the mass flow attached to the contents, it is really only one flow that is to be 
considered, namely the charging. The energy balance is affected by the same mass flow and in addition the 
heat exchange with the jacket. 
 

 

Figure 2: A simple batch stirred tank reactor
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Figure 4: Set of equations describing the behaviour of the reactor part, thus not the jacket. 

Figure 4 shows the set of equations representing the behaviour of the liquid contents. The table has 3 
columns, the first is the equation, the second what variable is computed, the third what is needed to be 
available and the last what is given. As suggested we start with the integration of the differential balances, 
shown as the first block of two equations. The variables being computed are the state variables, namely the 
molar species vector and the enthalpy (as we assume constant pressure in the tank). The initial conditions are 
given and take care of the initial charging with reactants at time zero. Required are the change of the state 
with respect to time, thus the differential balances. Those are in the next block. The next block is devoted to 
the transport. Here it is only one stream, namely the heat flow between jacket and liquid contents. The arrow 
in the graphical representation of the topology provides the reference co-ordinate for the flow. Thus positive 
flow is from the contents to the jacket, whilst a negative flow would model the inverse flow. The introduction of 
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the directions in the connections keeps the signs in the balances clean and the flow must only be defined 
once, a very logical request indeed. 
The model we use for the heat flow is simply a discrete gradient with a conductivity as a parameter. This is 
assuming that the heat transfer through the inner reactor wall is very fast and has the consequence that the 
capacity effect of the wall is neglected. The quantity being computed is the heat flow, required is the 
temperature in the contents, whilst the temperature in the jacket is assumed to be known as well as the 
conductivity. 
The next block is about the reaction ongoing in the liquid phase. The production rate vector is required for the 
differential species balances. The stoichiometry defines the ratio and contribution of the different extent of 
reactions, which in turn is given by a kinetic law. The latter is normed by the volume and the reaction constant, 
which is not constant, is given as a function of the temperature using the Arrhenius model in the next line. The 
composition dependency is captured in the g(.) function. In all cases, the result is the quantity on the left-hand-
side, so all equations are explicit. This changes in the next block. 
Here we close the two cycles by defining a mapping of the state into the secondary state. This part involves 
the definition of the effort variables, thus the equations of state (Caratheodory, 1909; Peterson, 1979; Rajeev, 
2008), all the intensive quantities and geometry. The first is the concentration, an example of defining an 
intensive quantity defining the need for the volume. In this case we assume the volume to be given. In many 
applications though the volume has to be obtained through an equation of state. Lastly we have an implicit 
equation. In this case it is the enthalpy being the integral over the derivative with respect to temperature of the 
partial molar enthalpies multiplied by the molar masses in the reactor, thus the state. The quantity to solve for 
is the upper limit of the integral. Often the heat capacity is given as an empirical model that was fitted to 
experimental results. Here we assume this relation is given. 
We construct the equations assuming a simulation, that is, the initial conditions and the parameters must be 
known to define a simulation problem. The reader should though be aware of the fact that the assumption of 
defining a simulation model is only used to make sure we generate a consistent algebraic structure. We do not 
initiate the problem, so once the algebraic structure is generated, one is absolutely free to define any 
mathematical/numerical problem that uses the model. 

6. Conclusions 

We take a view of mathematical behaviour theory to construct a complete representation of chemical-physical 
systems that are embedded in their environment of constant reservoirs. So we bring together the 
mathematical view and the physical view of thermodynamics, fluid flow and reaction kinetics all under the 
umbrella of a state-space representation of such systems. The definition of the model is done in reverse order 
than the computations starting with the initial conditions, we define the integrals, the differential balances that 
are dependent on flow and kinetic descriptions, one for the exchange of extensive quantities between parts of 
the system and the kinetics describing the transposition of the species internal to the capacities. 
So the definitions are done starting from the state towards the secondary states, which then are tied to the 
state thereby closing the loop. 
Writing the equations in this order assuming that one defines a simulation problem, provides the means to 
construct the model such that one can check on consistency and completeness. Latter is simply a degree of 
freedom argument that must be satisfied, namely the number of equations must match the number of 
variables. This is easily done by following the said procedure and using a table for the model equations. The 
degree of freedom argument becomes visible as the variables appearing in the third column, namely what is 
needed must match what is being computed, thus the second column. 
The construction mechanism is chosen such that the consistency of the equations can be guaranteed. Taking 
the view of defining a simulation problem is the most convenient choice. The resulting algebraic structure can 
though be used for any problem formulation – it is by no means bound to a simulation problem. If indeed one 
has a simulation problem and thus instantiates what is in the above example shown as given, then also the 
computational sequence is defined, as one simply needs to invert the definition sequence of the equations: 
one starts with the states, solves for the mapping into the secondary states, which then enables the 
computation of the transport and the transposition, which when linearly combined proved the differential 
balances. 
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