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In this paper, we propose an unsupervised ensemble clustering approach for fault diagnosis in industrial 
plants. The basic idea is to combine multiple base clusterings of operational transients of industrial equipment, 
when the number of clusters in the final ensemble clustering (P*) is unknown. In practice, a Cluster-based 
Similarity Partitioning Algorithm (CSPA) is employed to quantify the co-association matrix that describes the 
similarity among the different base clusterings and, then, a Spectral Clustering technique embedding an 
unsupervised K-Means algorithm is used to find the optimum number of clusters of P* based on Silhouette 
validity index calculation. The identified clusters allow distinguishing different operational behaviors of the 
equipment. The proposed approach is verified with respect to an artificial case study representative of the 
signal trend behavior of an industrial equipment during shut-down operations. The obtained results have been 
compared with those achieved by a state-of-art approach, known as Cluster-based Similarity Partitioning and 
Serial Graph Partitioning and Fill-reducing Matrix Ordering Algorithms (CSPA-METIS): the results show that 
the novel approach is able to identify the final ensemble clustering with a lower misclassification rate than the 
CSPA-METIS approach. 

1. Introduction 
In industries such as chemical, oil and gas, and nuclear, equipment is subjected to several causes of 
performance degradation (e.g., presence of manufacturing defects, wear and tear) that lead systems to work 
in anomalous conditions (Baraldi et al. 2013a). Capturing the different operational conditions of this 
equipment, detecting the onset of abnormal conditions and classifying them in different types can aid the 
decision maker to decide a proper maintenance intervention and, hence, increase equipment availability and 
system safety, while reducing overall corrective maintenance costs (Piccinini and Demichela, 2008; Al-Dahidi 
et al. 2014; Demichela and Camuncoli, 2014). 
Fault diagnosis aims at partitioning the collected data representative of different operational conditions of the 
equipment into dissimilar groups (whose number may be “a priori” unknown) such that data belonging to the 
same group are more similar than those belonging to the other groups. Once the groups are identified, one 
can distinguish, among these, anomalous behaviors of the equipment (Baraldi et al. 2013a).  
In this paper, we consider the practical case in which the number of groups is a priori unknown and formulate 
the problem as an unsupervised classification problem aimed at partitioning the data into homogeneous 
clusters so that those data belonging to the same cluster are very similar to each other and dissimilar to those 
of the other clusters (Salvador, 2002). 
Several clustering algorithms have been proposed and practically used to solve unsupervised classification 
problems, for example K-Means (Liao and Bolt, 2002), Self-Organizing Maps (SOM) (Al-Dahidi, 2014), Fuzzy 
C-Means (FCM) (Di Maio et al. 2011; Di Maio et al. 2012; Baraldi et al. 2013a), Classification Tree (Baraldi et 
al. 2012) and Spectral clustering (Von Luxburg, 2007; Baraldi et al. 2013a; Baraldi et al. 2013b; Baraldi et al. 
2014). However, there is no unique clustering algorithm capable of correctly identifying the underlying 
structure of any kind of dataset. Even the application of different clustering algorithms to the same set of data, 
or of the same algorithm with different parameter settings, leads to different clustering results (Fred and Jain, 
2005; Fern and Lin, 2008; Vega-Pons and Ruiz-Shulcloper, 2011). Without any prior knowledge on the 
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underlying structure of the dataset, one can only say that the different results obtained are equally plausible 
(Vega-Pons and Ruiz-Shulcloper, 2011). 
To proceed with this uncertainty in the clustering model, ensemble approaches have been proposed (Strehl 

and Ghosh, 2002). A typical ensemble clustering scheme is shown in Figure 1. For a given dataset X , 
ensemble clustering usually entails the collection of the results from multiple base clusterings. The base 
clusterings composing the ensemble can be different because of the different clustering algorithm used or 

because of the different data features extracted from X upon which (some) clustering algorithm is applied. 
The outcome of the individual base clusterings are, then, aggregated into the final ensemble clustering P* by a 
given method of aggregation (Strehl and Ghosh, 2002; Topchy et al. 2005; Chen, 2007; Vega-Pons and Ruiz-
Shulcloper, 2011). 

 

Figure 1: Scheme of ensemble clustering approach 

Several methods have been used to obtain the final ensemble clustering. For example Graph and Hypergraph 
partitioning algorithms, such as the Cluster-based Similarity Partitioning (CSPA), construct a graph from the 
similarities among the base clusterings, and cluster it using a graphic-based clustering algorithm such as 
Serial Graph Partitioning and Fill-reducing Matrix Ordering Algorithm (METIS) (Karypis and Kumar, 1995; 
Strehl and Ghosh, 2002), for a predetermined number of clusters M in the final ensemble clustering (Topchy et 
al. 2005). In this paper, CSPA and METIS algorithms have been taken as reference for comparison because 
CSPA-METIS is the simplest and often best performing method for ensemble aggregation (Strehl and Ghosh, 
2002). 
However, for most industrial applications, the “a priori” knowledge of the number of clusters M to be found in 
the final clustering is rarely available (Chakaravathy and Ghosh, 1996; Strehl and Ghosh, 2002). For this 
reason, an objective of the present work is to develop a novel unsupervised ensemble clustering approach 
capable of identifying the final ensemble clustering without any previous knowledge of M.  
To this aim, we propose to replace METIS algorithm with spectral clustering (Von Luxburg, 2007; Baraldi et al. 
2013a) and Silhouette validity index (Rousseeuw, 1987) to automatically determine M. Practically, the base 
clustering results are summarized in a co-association matrix by pairwise similarity computation. Then, a 
spectral clustering technique (Von Luxburg, 2007; Baraldi et al. 2013a), embedding the unsupervised K-
Means algorithm, is fed by the similarity matrix values for mining the clusters that are formed by the most 
similar data. The optimum number of clusters C* is selected among several candidates Ccandidate, based on the 
morphology of the obtained final ensemble clusters, evaluated by the Silhouette validity index that measures 
the similarity of the data belonging to the same cluster and the dissimilarity of these in the other clusters (a 
large silhouette value indicates that the obtained clusters of the final ensemble clustering are well separated 
and compacted (Rousseeuw, 1987)). The proposed approach is tested with respect to an artificial case study 
representative of the signal trend behavior of industrial equipment during shut-down transients. The results 
obtained have been compared with those achieved by CSPA-METIS approach.  
The remaining of this paper is organized as follows. In Section 2, the novel unsupervised ensemble clustering 
approach is proposed. The artificial case study representative of the signal trend behavior of industrial 
equipment during shut-down transients is introduced in Section 3. Furthermore, the results obtained with the 
application of the novel approach to the artificial case and the comparison with CSPA-METIS, are discussed in 
Section 4. Finally, Section 5 concludes the paper with some considerations. 

2.  The novel unsupervised ensemble clustering approach 
In this Section, the novel unsupervised ensemble clustering approach is proposed to overcome the need of 
having “a priori” knowledge of the number of clusters M in the final ensemble clustering. The flowchart for the 
method is sketched in Figure 2. The algorithm goes along the following two phases: a procedure (i.e., CSPA) 
for establishing a similarity matrix S  and a novel ensemble procedure for revealing the “hidden” structure P* 

of S  by adopting spectral clustering and Silhouette validity index. 
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Figure 2: Flowchart of the proposed approach 

We consider N data belonging to the dataset X  that are clustered into H base clusterings. For each j-th base 

clustering, j=1,…,H, each datum is labeled by an integer number ranging in [1, ]j
optC , where j

optC  is the 

number of clusters for each j-th base clustering. The problem of clustering the N data is, thus, transformed into 
an aggregation problem of the base clusterings outcomes Y of size NxH. 
 
The algorithm entails five main steps, where the first two are the CSPA procedure and the last three are the 
novel ensemble procedure: 
Step 1: Adjacency matrix computation. In practice, for each j-th base clustering, if two data belong to the same 
cluster they are considered similar, i.e., similarity μ=1, and if not they are dissimilar, i.e., similarity μ=0. Thus, 
an adjacency binary similarity matrix, A , is built by aggregating the similarities of the H base clusterings 
(Strehl and Ghosh, 2002).  
Step 2: Similarity matrix computation. From the adjacency binary similarity matrix, A , the overall similarity 

matrix S , is computed as the entry-wise average of the H base clusterings, i.e., 
1 T

S A A
H

= (Strehl and 

Ghosh, 2002). In this way, each entry of the similarity matrix has a value in [0,1], which is proportional to how 
likely a pair of data is, when grouped together. 

Step 3: Spectral Clustering. Spectral clustering aims at transforming the similarity matrix S into a normalized 

laplacian matrix rsL . Then, for the obtained rsL , the eigenvectors 1 2, ,..., ,...,
candidate NCu u u u  are calculated 

corresponding to the computed eigenvalues in ascending order 1 2, ,..., ,...,
candidate NCλ λ λ λ , and are stored in a 

matrix U  with a size NxN, where Ccandidate=[Cmin,Cmax], and Cmin and Cmax are the possible minimum and 
maximum numbers of clusters in the final ensemble clustering, respectively. 
Step 4: Clustering algorithm. For each candidate number of clusters Ccandidate, the eigenvectors 

1 2, ,...,
candidateCu u u associated to the Ccandidate smallest eigenvalues of its laplacian matrix rsL  are calculated. In 

this way, the reduced matrix of U with a size NxCcandidate is fed to a clustering algorithm to find the final 

ensemble clustering *
candidateCP . In this work, we resort to the K-means algorithm as one of the most popular 

clustering methods (Su and Chou, 2001; Fern and Lin, 2008). 

Step 5: Final ensemble clustering selection. For each Ccandidate the obtained ensemble clustering *
candidateCP is 

evaluated by computing its Silhouette validity index 
candidateCSV (Rousseeuw, 1987). The most appropriate 

ensemble clustering *
*

C
P  is the one for which the Silhouette reaches a maximum, i.e., clusters are well 

separated and compacted (Rousseeuw, 1987).  
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3. Artificial case study  
An artificial case study has been designed to generate N=149 data representative of the signal trend behavior 
of an industrial equipment, e.g., a rotating machine, during shut-down operations. Each datum is described by 
H=3 features representative of the equipment condition, e.g., vibration signals, and of the environmental and 
operational conditions that can influence the equipment behavior, e.g., vacuum and temperature signals. 
These data are stored in a matrix X of a size 149x3. 

The objective is to reveal the “hidden” structure P* of the dataset X  by identifying groups of data with similar 
functional behaviors, representative of different operational conditions of the equipment. Without loss of 
generality, it is assumed that the operational conditions of the industrial equipment are M=7: 1) three classes 
of normal condition (NC1, NC2, NC3), 2) three classes of abnormal condition (AC1, AC2, AC3), and 3) one 
class of outliers (i.e., unknown behaviours). The dataset X is pictorially shown in Figure 3. The values of each 

j-th feature jX , j=1,2,3, for different classes of data have been created by randomly sampling their realization 
from different univariate distribution functions (1 to 10 in Figure 3) whose combination characterizes the class.  

 

Figure 3: The seven operational conditions of the artificial case study 

As shown in Figure 3, clustering each j-th feature independently may reveal only some groups of the “hidden” 
operational conditions of the industrial equipment indicated in Figure 3, whereas only a final ensemble 
clustering would enlighten all the M=7 clusters. For example, clustering the feature j=1 cannot reveal any 
abnormal operational condition. The objective is, thus, to aggregate these base clusterings into a final 
ensemble clustering P* capable of identifying the “true” grouping of the shut-down transients of the industrial 
equipment.  
To mine the clusters shown in Figure 3, the j-th base clustering outcomes are obtained by a K-means 

unsupervised learning algorithm (Vlachos et al. 2003). For identifying the correct number of clusters j
optC  for 

each base clustering, Davies-Bouldin (DB) validity criterion has been used (Davies and Bouldin, 1979): the 
minimum DB value is reached for the number of clusters which gives optimal separation and compactness 

(Davies and Bouldin, 1979). Table 1 reports the optimum number of clusters j
optC  obtained for each base 

clustering. For validation of the DB validity criterion to decide j
optC , we use the information on the real classes 

to which the data belong, to calculate the misclassification rate (Table 1) (it is worth noticing that in real 
industrial applications the real class is unknown). 

Table 1:  Optimum numbers of clusters and misclassification rates of clustering for the three features 

Features j
optC  Misclassification 

rate 
 

j=1 2 7.4%  
j=2 2 4.6%  
j=3 4 6.8%  

The obtained base clustering labels for each feature have been, then, stored in a matrix Y of a size 149x3. 
The application of the clustering ensemble approach aims at finding the final ensemble clustering of the data. 
In the following Section, our novel approach is applied and compared with CSPA-METIS approach.  
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4. Application of the novel approach to the artificial case study 
In this Section, the application of the novel ensemble clustering approach is described according to the steps 
presented in Section 3 and then, the results obtained are compared to those achieved by the CSPA-METIS 
approach. 
Given the similarity matrix ,S  we calculate rsL  and its eigenvectors 1 2 149, ,..., ,...,

candidateCu u u u
 

and the 

corresponding eigenvalues 1 2 149, ,..., ,..., .
candidateCλ λ λ λ The obtained eigenvectors are stored in the matrix U with 

size 149x149. The number M of clusters of final ensemble clustering is selected according to the values of 
Silhouette for different numbers of clusters Ccandidate that span the interval [2,16], where the lower bound (2) is 
the minimum number of base clusters (see Table 1), whereas the upper bound (16) is the number of the 
largest combination of the three base clusters (i.e., 2x2x4): the optimum number of clusters C* in the final 
ensemble clustering is the value at which the Silhouette value is maximized, i.e., C* =6 (star in Figure 4 (left)). 
Figure 4 (right) shows the results of the aggregation obtained by using the novel and the reference 
approaches. The Figure shows the N=149 data in chronological order from top to bottom with the associated 
true clustering labels represented in different shades of color. It is worth mentioning that there is no 
correspondence between the similar colors of the true and the aggregation results. The application of CSPA-
METIS approach leads us to distinguish clearly only three clusters, i.e., NC1, NC2 and NC3, whereas the 
remaining data have not been correctly clustered. Comparing the obtained clustering results with the true 
clustering, one can calculate the misclassification rate to be equal to 34.9% (52 out of 149 data incorrectly 
classified), which is not a satisfactory result. On the other hand, the application of the novel approach leads us 
to recognize clearly six out of seven operational conditions with a reduced misclassification rate 3.4% (5 out of 
149 data incorrectly classified) compared to the CSPA-METIS approach. 
 

                                                                             

Figure 4: Silhouette values vs. cluster numbers (left) and the obtained final ensemble clusterings obtained 
by the novel and the reference approaches vs. the true clustering (right) 

As last remark, it is worth mentioning that the outliers (three transients – class 7) using the proposed approach 
have not been grouped together in a separate cluster: this depends on the capability of the base clustering 
algorithm in recognizing the outliers (Topchy et al. 2005). For example, the optimum number of clusters for the 

feature j=1 is 1 2optC =  (see Table 1), whereas it should be equal to 3 (see Figure 3).  

5. Conclusions 
In this work, a novel unsupervised ensemble clustering approach is proposed to construct a final ensemble 
clustering P* from H individual base clustering outcomes. The method is based on Spectral Clustering, 
embedding an unsupervised K-Means algorithm that is fed by a pairwise similarity computation, so that a co-
association matrix summarizes the similarity among the data and the clusters are formed by the most similar 
data. The optimum number of clusters is selected among several candidates based on Silhouette validity 
index that quantifies the morphology of the obtained clusters and gives reason of the similarity of data 
belonging to the same cluster and, at the same time, of dissimilarity with those in the other clusters: a large 
silhouette value indicates that the obtained clusters of the final ensemble clustering are well separated and 
compacted. The proposed approach has been successfully tested with respect to an artificial case study 
properly designed to reproduce the signal trend behavior of industrial equipment during shut-down transients. 
The results obtained have been compared to those achieved by the CSPA-METIS approach of literature. The 
continuation of this work will consider the application of the method to real datasets collected during past 
operation of industrial equipment such as, for example, a nuclear power plant turbine. 
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