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The paper deals with the technique for modelling and computer simulating the multiplicity and stability 

types of stationary regimes in chemical through-reactors and for calculating the mass transfer efficiency 

with allowing for the phenomena of irreversibility and thermodynamic imperfectness in systems where 

dynamical wave regimes can arise. The rate characteristics for certain kinetic models, which can be 

applied to different kinds of systems characterized by formation of transient regimes with moving 

concentrate fronts and oscillators have been considered.   

1. Introduction 

Multi-stage reactions and the imperfection of reaction-diffusion systems in chemical reactors can 

substantially affect the formation of the technological process regime (Ni et al., 2009). In complex multi-

stage chemical systems the multiplicity of steady-states (Barkanyi et al., 2013), oscillational regimes in 

autocatalytic reactors (Dateo et al., 1982) and in the bromate-cerium-malonic acid systems (Field et al., 

1972), and regimes of wave concentrate waves (Brener and Musabekova, 2006) can be observed. Thus 

these factors should be taken into account when modelling the transport phenomena in a chemical 

apparatus of different types, for example, jetloop-reactors (Behr and Becker, 2009) or cascades of bath 

reactors (Wang et al., 2011). At the same time, despite a lot of important works (Berezowski, 2011) and 

the outstanding monograph (Holodniok et al., 1984), several problems remain to be worked out 

insufficiently. We believe those are the problems of how the irreversibility of some stages of complex multi-

stage reactions and the imperfectness of thermodynamic system can affect the dynamical behavior of the 

system (Russo et al., 2002). The goal of this work is to consider the technique for modelling and computer 

simulating the multiplicity and stability types of stationary regimes in chemical through-reactors and for 

calculating the mass transfer efficiency with allowing for the mentioned above phenomena of irreversibility 

and thermodynamic imperfectness in systems where dynamical wave regimes can arise (Brener and 

Musabekova, 2006). So, the paper deals with the methodology for calculating rate characteristics for 

certain kinetic models, which can be applied to different kinds of systems characterized by formation of 

transient regimes with concentrate moving fronts and oscillators (Carvajal et al., 2012). Several models of 

great generality describing the nonlinear physics-chemical systems have been identified. The study of 

such systems creates prerequisites for the establishment of methods suitable for calculating a wide class 

of systems and reactors (Jesus et al., 2013).   

2. Theoretical details 

The model systems such as "Brusselator", the system of Belousov-Zhabotinsky reaction and a few of 

autocatalytic systems of second and third order have been considered. The model “Brusselator", which is 

investigated first under the guidance of I.R. Prigogine, simulates many real complex multistep reactions 

occurring in industrial reactors. Kinetics of this system is described by the following system of equations 

(Dateo et al., 1982): 
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In reality, some of the stages in the reaction medium "Brusselator " may be reversible, what complicates 

the kinetic equations and their analysis. Since this case is not well described (Holodniok et al., 1984), in 

this work the two special cases are investigated: the reversibility of the last stage of the reaction and 

reversibility of the two reaction stages of the above system:   
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The Belousov-Zhabotinsky system, described first by the example of oxidation of malonic acid in the 

medium catalysed by ions of transition metals, is a classic example of a system with self-oscillatory 

kinetics. For the study we selected the kinetic scheme (Holodniok et al., 1984), which is modified with the 

possibility of reversibility of the fourth stage 
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The flow structure is represented as a cascade of two reactors of perfect mixing (Hua et al., 2004) with 

mutual mass transfer (Figure 1). 

 

  
a) Cascade with recycles                                                 b) Cascade without recycles 

 

Figure 1 Cascades of chemical reactors with mutual mass transfer 

 

The corresponding systems of kinetic equations, provided the resulting inflow and outflow of intermediate 

reactants are zero, and the concentration of the incoming components are kept constant, have the form.  

For the "Brusselator" system:  
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For the Belousov-Zhabotinsky system 
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For the convenience of numerical experiments and interpretation of data, all of the rate constants of 

reactions ik , transport coefficients ijD  and time t were arranged to the dimensionless form with the help 

of the  relaxation time of the first stage 11 kp  , i.e. the dimensionless characteristics were determined 

according to the following scheme 111   ,  , kDDkkktkt ijijii  .  

Some results of numerical experiments at the initial stabilization period are shown in Figures 2 and 3. 

 

 
Dotted curve - first reactor; solid curve - the second reactor.  

        1 - the reaction product 1E ; 2 - complex 1X ; 3- complex 1Y  

 

Figure 2 - Changes in the concentrations of reactants in the cascade of reactors with recycle  

               System "brusselator" 

 

 
Dotted curve - first reactor; solid curve - the second reactor.  

        1 - the reaction product 1Z ; 2 - complex 1X ; 3 - complex 1Y   

 

Figure 3 - Changes in the concentrations of reactants in the cascade of reactors with recycle  

               System "Brusselator" 

 

Analysis of numerical experiment data shows that the concentration of active complex Y which is arising 

during the reaction in the "Brusselator” system has the maximum after some time from the beginning of the 

process, and then it begins to decrease with striving for a stable value. Dependences of concentrations of 
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the intermediate complex X  and the final product E  on time are monotonous and they strive to stable 

values through the rather long time.  

It is found that the partial decomposition of the final product under the rate constants of the decomposition 

reaction, comparable to constants of other stages, may withdraw the oscillating behaviour in the 

concentrations of intermediate complexes characteristic for “Brusselator". This confirms the importance of 

considering the reversibility of individual reaction stages in the analysis of the kinetics of the cascade of 

chemical reactors (Manenti et al., 2011). 

With respect to the Belousov-Zhabotinsky reaction (Holodniok et al., 1984) the influence of recycle is 

manifested in establishing the stable characteristics of the reactor (i.e., concentrations of the major 

products of the reaction) in a shorter time.  

It can be seen that with increasing of k1 and k2 the concentration of the component Y in the system 

increases and become practically stable at a time depending on the stoichiometric ratio of the last reaction 

stage. In the absence of the last stage (h = 0) , there exists a rapid exhaustion of the component in the 

system. The numerical experiment allows us to recommend this model for the calculation of complex 

chemical interaction processes in multicascade autocatalytic reactors. 

3. Analysis of dynamical regimes 

One-dimensional equation of convective diffusion of the main reaction product in tubular chemical reactors 

can be written as (Berezowski, 2011): 

 

 CfxCDxCVtC  22 .                                                            (6) 

 

The solution of equation (6) will be sought in the form of a traveling wave front with similar variable  

 

vtx .                                                                                                                                            (7)                                 

A stationary point of the system is determined by the condition 0y ,   00 Cf .          
The kinetic function for the system of “Brusselator” type which contains an excess of acid with allowing for 

the basic process stages can be given as expression of third order.   
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It can be shown that in this case the equilibrium state is a stationary point of the "saddle" type for any 

velocities of flow and wave front.  

For bimolecular chemisorption with partially reversible reaction absorption of the target component the 

kinetic function has a second order.  
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where 21,kk  are the rate constants of the forward and reverse reactions, respectively.  

Condition for the existence of stationary states of the "saddle" or "node" types has the form: 
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From (9) it follows that under the average velocity of reactants mixture less than critical velocity of the 

wave front the stationary point is stable.   

The appropriate critical velocity of wave front reads  

 

 0212 CkkDVv  .                                                                        (10) 

 

Numerical results show that in the neighbourhood of the reactor inlet there is formed the concentration 

field corresponding to the soliton-like wave front. This phenomenon is fully consistent with the results of 
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theoretical analysis and known experimental data (Hua et al., 2004, Dateo et al., 1982). According to the 

numerical experiment it can be defined the size of the initial site and the amplitude of oscillations.  

4. Transient regimes in tubular through-reactors 

Multiplicity of stationary states in the flowing reacting systems leads to the need for a detailed analysis of 

both the stability of each state and emerging in the vicinity of the unstable points  periodic and transient 

regimes (Sierra et al., 2013). The estimates for calculating the required residence time in a separate 

diffusion cell for different systems which have a plurality of stationary states and oscillatory dynamical 

regimes, which should be used in the general system of equations taking into account the known structure 

of streams, have a great importance for calculating cascades of reactors (Hua et al., 2004.   

Let us consider a model reaction scheme in which the main components and reactants are YX , , and the 

first stage is autocatalytic    
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Let us also suppose the reactor works with a continuous supply of the componentY with consumption 

speed q .  

The detailed analysis of modes in this case gave the following results. 

If 1
2

3 
k

k
 then for any q the stationary point is a stable node. Therefore the oscillating regime in this case 

does not arise.  If 1
2

3 
k

k
 then there exists a range of speeds q for which the transient oscillating regime 

can be generated.   

This range reads 

 

     231
2
2231

2
2 112112 kkkkqkkkk  .                                                                (12) 

 

For this oscillatory transient regime the frequency of oscillation occurring ωand the logarithmic decrement 

ν can be determined as  

 

422 2
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24k                                                                                                                                                (14) 

 

The case of imperfectness of the reaction-diffusion system in the reactor with an autocatalytic reaction has 

been studied also. The expression for the phase velocity of the wave front, adjusted for non-perfectness 

can be written as follows: 

 

ADkcc ir 100  .                                                                                                                      (15) 

 

Here the parameter of imperfectness reads (Prigogine, 1957) 

 

  2122 kkAXXAAAX   .                                                                                                (16) 

 

Here AX , AA , XX  are the parameters of molecular interactions (Prigogine, 1957) 

The analysis shows that the rate of supply of reagents in chemical reactors not only controls the output of 

the reactor, but also may qualitatively change the set of stationary and transient regimes of their work. 

Typically, these changes relate only to the thermal operating conditions (Jesus et al., 2013), and other 

factors often are neglected in practice of calculation and design of chemical reactors. 
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5. Conclusions 

It was shown that irreversibility of certain stages didn’t change dynamics of chemical oscillations but led to 

decreasing or increasing the conversion depending on irreversibility of the concrete reaction stage. It was 

established that influence of recycle is manifested in stabilization of process parameters for all 

components in reduced time. Analysis of propagating models for non-linear concentration waves in tubular 

through-reactors with model diffusion-reaction systems has been carried out. Conditions for non-linear 

concentration wave fronts propagating in through-reactors in the cases of irreversibility or reversibility of 

one reaction stage have been obtained, and relations for parameters of the concentration wave front have 

been obtained too. The character of the influence of a non-perfectness of reaction-diffusion systems on the 

effective diffusion coefficient and dynamic regimes transfer parameters has been studied. 
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