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Biofuels are key products for the sustainability of the world energy consumption in the next years. 

Biodiesel in particular is a non-toxic, biodegradable, environmentally friendly alternative diesel fuel. 

Nowadays, the main problem for the commercialization of biodiesel is its final cost, that is strongly 

dependent (about 85 % of the total) by the feedstock used. A possible way to lower the biodiesel 

production costs is using raw oils, which contain a higher amount of Free Fatty Acids (FFA) that should be 

eliminated before the transesterification reaction to avoid soaps formation. In this work the regression of 

kinetic parameters of heterogeneously catalyzed esterification with a packed-bed reactor was made. 

Robust techniques for kinetic parameters estimation and simultaneous discrimination of rival models were 

adopted and combined with a dedicated differential-algebraic equation (DAE) model that characterizes the 

system. The main kinetic parameters were regressed using kinetic models other than literature models in 

considering the activity (UNIQUAC model was used to calculate the activity coefficients) of the 

components instead of the concentration because the oil/methanol/water/FAME system is highly non ideal. 

The kinetic parameters were obtained using equilibrated resins, i.e. using the catalyst after having let it to 

adsorb reactants and products at the operative conditions. The regressed parameters allow to represent 

the system in a wide range of operating conditions with a little residual error. 

1. Introduction 

Biofuels are key products for the sustainability (Čuček et al., 2012) of the world energy consumption in the 

next years (Andrade, 2005). Biodiesel is a fatty acid methyl esters (FAME) mixture and can be obtained by 

transesterification of highly refined vegetable oils with methanol in homogeneous based catalysed 

processes (Ma et al, 1999). The starting oils are mainly constituted by triglycerides (about 90-98 % of total 

mass) and Free Fatty Acids (FFA), linear carboxylic acids in the C14-C22 range, with different instauration 

levels. As of today, the main problem for the commercialization of biodiesel is its final cost, that is strongly 

dependent (about 85 % of the total) by the feedstock used. Using unrefined or waste oils as a feedstock 

represents a very convenient way in order to lower biodiesel production costs (Klemeš et al., 2010). Some 

examples of low cost raw materials for biodiesel production are crude vegetable oil (Ceclan et al., 2012), 

waste cooking oil (Bianchi et al., 2009) and animal fat (Pirola et al., 2010). The main problem associated 

with the use of these types of low-cost feedstock lies in their high content of FFA, leading to the formation 

of soaps during the transesterification reaction. Esterification of FFA in presence of either homogeneous or 

heterogeneous acid catalysts allows, at the same time, to lower the acid content and to obtain methyl 

esters, i.e. biodiesel, already in this preliminary step. A remarkable advantage of heterogeneous catalysis 

is the easier separation and recovery of the catalyst after the reaction. Since FFA esterification is an 

equilibrium reaction, the addition of a methanol amount higher than the stoichiometric one is common in 

order to shift the equilibrium towards the products. However, the formation of two liquid phases has got 

two main drawbacks: firstly, part of the catalyst inside the reactor will be wetted by this second phase and 
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then it will not work in the reaction, due to the high affinity between the resins and methanol; secondly, the 

repartition of FFA between the two liquid phases contributes to lower the final biodiesel yield even if the oil 

at the end results deacidified. The aim of the present work is the regression of the kinetic parameters 

taking into account two different models (Popken et al., 2000), a pseudo-homogeneous one and a 

adsorbed based one, which accounts for the different affinity toward the polymeric matrix of all the species 

involved in the reaction and the solvent (triglycerides). The nonideality of the liquid mixture was considered 

using the UNIQUAC equation for calculating the activity coefficients.  

2. Experimental 

The experimental data used for the rigorous kinetic parameter estimation are reported elsewhere (Pirola et 

al., 2014) together with the analytical methods and the catalyst characterization. A brief discussion of the 

choice of the catalyst type and the rector description are however reported here for the sake of clarity. 

2.1 Catalyst 
Sulphonic acid exchange resin Amberlyst 46 (wet) catalyst was used for all the experiments. It was kindly 

provided by Dow Chemicals Company. The sample Amberlyst 46 was chosen because this resin unlike all 

other Amberlyst 46 is not internally sulphonated, but it only shows surface acid groups. Consequently, it is 

not subject to any internal adsorption-desorption phenomena for both reactants and products that thus 

could be neglected. 

2.2 PBR reactor 
The PBR reactor, whose scheme is reported in Figure 1, is an iron cylinder 20.3 cm long and with an 

internal diameter of 4.7 cm with 3 intermediate samplings. The catalytic bed is placed at 7.4 cm from the 

bottom of the reactor and it has a volume of 86 cm
3
. 

 

Figure 1: PBR reactor scheme  

The resins charged were used for all the experimental deacidification runs. In order to maintain a constant 

internal temperature, an electrical resistance band controlled by an internal thermocouple is used. This 

internal thermocouple was inserted in the middle sampling. The oil is mixed with methanol using an FFA: 

MeOH molar ratio of 1:5 in a feeding chamber (FC) pressurized by compressed air up to 6 bar. The feed is 

fluxed into the reactor, heated by an external hot circuit and insulated using glass fibers. The whole system 

is thus under the same pressure of the FC while the flow is controlled by a suitable mechanical valve (V7). 

The esterification reaction was carried out at different operative temperatures at 6 bar. The main 

advantage of this reactor configuration is the possibility to perform deacidification reactions above the 

methanol normal boiling point (64.70 °C) because the system is under pressure. In Table 1 the main 

reactor characteristics are reported. 
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Table 1: PBR reactor parameters 

Reactor Volume  Void fraction Catalyst density Catalyst charged 

0.180 dm
3
 0.36 0.60 kg/dm

3
 51.6 g 

2.3 Nonlinear regression using BzzMath library 
The kinetic parameters regression on experimental data was performed by means of the set of very robust 

optimizers belonging to the BzzMath library (Buzzi-Ferraris and Manenti, 2012). Such optimizers are 

based on the object-oriented programming and parallel computing so as to reduce the computational time 

(Buzzi-Ferraris and Manenti, 2010a) and they have implemented special programs able to simultaneously 

handle the so-called narrow-valley problem, which typically arise in the estimation of kinetic and 

thermodynamic parameters (Buzzi-Ferraris and Manenti, 2009); the possible multicollinearities of the 

parameters, which could be due to coupled chemical-physical phenomena; and the possible presence of 

bad-quality measures with the identification of possible outliers (Buzzi-Ferraris and Manenti, 2010b). 

Actually, the mistake made by many strategies is to adopt search directions oriented along the bottom of 

the valley for the one-dimensional minimum. Such a search will prove ineffective, usually because the 

direction is inexact and the valley is nonlinear. To exploit the search direction that inaccurately detects the 

bottom of the valley, it is necessary to change the point of view: (1) any optimization algorithm can find the 

bottom of the valley by starting from a point outside the same valley; (2) the line joining two points on the 

bottom of the valley is a reasonable valley direction; therefore there is a good probability that a point 

projected along such a direction will be close to the valley; (3) nevertheless, this valley direction must not 

be used as the one-dimensional search direction, but rather as a direction along which a new point 

projection must be carried out; (4) this new point should not be discarded even though it is worse than the 

previous one, rather it is the new starting point for a new search; (5) this search must be performed in the 

sub-space orthogonal to the valley direction to prevent the issue of small steps arising. This philosophy is 

particularly simple in object-oriented programming. The optimization problem is split into two different 

levels: the first (outer optimizer) is managed by a single object that exploits the above mentioned 

procedure to find a certain number of points to initialize an even number of objects. In the second (inner 

optimizer), each object uses a program to search for the minimum with a limited number of iterations 

starting from the point assigned by the outer optimizer. This philosophy is useful in solving all problems 

demanding algorithm robustness: (1) when the function has many minima and we need to search for the 

global minimum; (2) when the function has very narrow valleys (or steep walls); (3) when the function is 

undefined anywhere. All these problems arise in the estimation of thermodynamic parameters. Moreover, 

this philosophy is particularly effective when several processors are available. The performance in terms of 

estimation accuracy and computational effort as well of the proposed approach has been proven with 

respect to the tools available in the commercial suites. 

2.4 Kinetic modeling 

All the experimental results, as previously described were used to regress the kinetic parameters taking 

into account two different models: a pseudo-homogeneous one, a power-law equation which simply 

considers the reaction rate dependent on the bulk activities of the components, shown in the following 

equation: 

𝑟 =
𝑑𝜉

𝑑𝜏
∗ 𝐶𝐹𝐹𝐴

𝑜 =  𝑘1
0 ∗ 𝑒 

−𝐸𝑎1
𝑅𝑇

 ∗ 𝑎𝐹𝐹𝐴 ∗ 𝑎𝑀𝑒𝑂𝐻 − 𝑘−1
0 ∗ 𝑒 

−𝐸𝑎−1
𝑅𝑇

 ∗ 𝑎𝐹𝐴𝑀𝐸 ∗ 𝑎𝐻2𝑂  
         (3) 

where k0i and Eai are the adjustable Arrhenius kinetic parameters, ai are the components 

activities while T is the absolute temperature. As previously explained, instead of considering all 

the fatty acids molecules, the oleic acid was chosen to represent all the oil FFA. The FAME then 

are represented by methyl oleate and the oil by triolein, a triglyceride constituted by three 

molecules of oleic acid. The other model considered is the adsorption-based one, shown in the 

following equation: 

𝑟 =
𝑑𝜉

𝑑𝜏
∗ 𝐶𝐹𝐹𝐴

𝑜 =  
𝑘1
0 ∗ 𝑒 

−𝐸𝑎1
𝑅𝑇

 ∗ 𝑎′𝐹𝐹𝐴 ∗ 𝑎′𝑀𝑒𝑂𝐻 − 𝑘−1
0 ∗ 𝑒 

−𝐸𝑎−1
𝑅𝑇

 ∗ 𝑎′𝐹𝐴𝑀𝐸 ∗ 𝑎′𝐻2𝑂

 𝑎𝐹𝐹𝐴
′ + 𝑎𝑀𝑒𝑂𝐻

′ + 𝑎𝐹𝐴𝑀𝐸
′ + 𝑎𝐻2𝑂

′ + 𝑎𝑂𝑖𝑙
′  

2   

         (4) 

with 
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𝑎𝑖
′ =

𝐾𝑖 ∗ 𝑎𝑖
𝑀𝑊𝑖

 
          (5) 

were Ki is the adsorption affinity constant for the i-th molecule, shown in Table 2, taken from (Popken et 

al., 2000) and adapted considering 

𝐾𝐹𝐹𝐴 = 𝐾𝐹𝐴𝑀𝐸 =
𝐾𝑀𝑒𝑂𝐻
3.5

 
                (6) 

as suggested by Rehfinger and Hoffmann (1990). 

The binary adsorption affinities were not regressed together with the kinetic parameters because a good fit 

but very poor prediction ability would have been obtained. The kinetic models with either an ideal liquid 

phase, considering the activity coefficients equal to one, or the nonideality of the mixture using the 

UNIQUAC equation, were considered to compare the kinetic parameters obtained when a more correct 

thermodynamic approach (UNIQUAC) is chosen instead a simpler one (IDEAL). UNIQUAC interaction 

parameters taui,j were calculated using Eq. (7)  

𝜏𝑖 ,𝑗 = 𝑒𝑥𝑝  
𝑏𝑖 ,𝑗

𝑇
  

          (7) 

where the binary bi,j parameters were taken from the AspenPlus™ database and are reported in Table 3. 

3. Results 

Since the PBR used for the esterification experiments has got only three samplings, for each temperature 

tested three different feeding flow rates have been used to obtain all the experimental curve reported. 

3.1 Kinetic regression 
As explained in Section 2.4 two different models were used for estimating the kinetic parameters. The 

optimized parameters are reported below in Table 4 with the residual errors. 

Even if the pseudo-homogeneous model does not consider the adsorption of both reactants and products, 

its use permits to better calculate the experimental trends, especially for the runs performed at high 

temperatures. This is probably due to the non-correct determination of the adsorption constants that were 

measured for the binary non-reactive mixtures at a fixed temperature (25 °C), far from the experimental 

Table 2: Binary adsorption equilibrium constants. 

Component (i) Binary Adsorption Affinity (Ki)  

Water 5.24  

Methanol 5.64  

FFA 1.61  

FAME 1.61  

OIL 0.00  

Table 3: UNIQUAC binary interaction parameters. 

i FFA H2O FFA FFA FFA H2O H2O FAME FAME OIL              

j FAME MEOH H2O OIL MEOH FAME OIL OIL MEOH MEOH              

bij [K] 83.44 -254.73 -377.09 80.52 -567.09 -252.11 -245.42 15.43 -579.71 -459.50              

bji [K] -106.26 165.26 -232.04 -90.43 112.63 -645.18 -435.31 -18.93 24.04 37.13              

Table 4: optimized kinetic parameters for the FFA esterification using different models. 

Model SSE k1
0 

(mol*s
-1

*m
-3

) 

k-1
0 

(mol*s
-1

*m
-3

) 

Ea1 

(kJ*mol
-1

) 

Ea-1 

(kJ*mol
-1

) 

             

Pseudo-homogeneous (IDEAL) 0.131 9.30*10
7
 9.62*10

-8
 32.268 -67.589              

Pseudo-homogeneous (UNIQUAC) 0.137 2.12*10
8
 1.13*10

-7
 33.154 -64.343              
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Adsorption-based (IDEAL) 0.145 9.67*10
6
 8.39*10

-9
 43.152 -57.229              

Adsorption-based (UNIQUAC) 0.291 1.34*10
7
 1.09*10

-10
 43.067 -65.658              

operative parameters. A regression of the adsorption based model kinetic parameters together with the 

binary adsorption constants of water and methanol (assuming valid the constraints of Eq. (6) and Koil=0) 

have been performed. The optimized parameters are reported in Table 5. 

By giving the optimizer two more degrees of freedom the SSE sensibly decreased, showing that a better fit 

could be obtained using the adsorption-based model. A comparison between some experimental data and 

the calculated behaviour is shown in Figure 2. 

From Figure 2 it is clear how an adsorption based model (Figure 2a and 2c) better fits the experimental 

data reported, that is particularly true near the equilibrium condition. The calculation of the activities 

considering the UNIQUAC model does not influence the overall SSE probably because the experimental 

amount of methanol used was chosen in order to have only a monophasic liquid mixture but, being the 

system oil/FFA/FAME/methanol/water highly nonideal, an eventual formation of two liquid phases can be 

calculated with this latter thermodynamic approach and thus its use is preferable.  

Table 5: Adsorption based model kinetic parameter, regressed together with the water and methanol 

adsorption equilibrium constants. 

Adsorption-based model SSE k1
0 

(mol*s
-1

*m
-3

) 

k-1
0 

(mol*s
-1

*m
-3

) 

Ea1 

(kJ*mol
-1

) 

Ea-1 

(kJ*mol
-1

) 

KWater KMeOH              

IDEAL 0.09 3.22*10
6
 6.96*10

-1
 40.467 -55.796 1.74*10

-2
 8.04*10

5
              

UNIQUAC 0.09 5.52*10
5
 1.20*10

2
 35.398 -58.339 5.16*10

-7
 4.03*10

5
              

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: experimental FFA esterification, experimental data (points) at 95 °C (circles), 85 °C (triangles) 

and 54 °C (diamonds) and simulated curves using (a) the adsorption based model with UNIQUAC, (b) the 

pseudo-homogeneous model with UNIQUAC, (c) the adsorption based model with IDEAL (activity 

coefficients=1), (d) the pseudo-homogeneous model with IDEAL (activity coefficients=1) 
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4. Conclusions 

The esterification of FFA in sunflower oil with methanol was studied in a PBR reactor. The experimental 

results obtained allowed to regress the main kinetic parameters using a rigorous optimizer library, 

considering two different models and either an ideal or a non-ideal liquid phase behaviour, using the 

UNIQUAC model for the calculation of the activity coefficients, that is not commonly found in literature. 

From the regression results, it could be concluded that the adsorption based model is better for fitting the 

experimental data and that, since the experimental data considered were obtained using a methanol 

amount such to have a monophasic liquid system, the calculation of the activity coefficients does not give 

a great advantage in this particular experimental situation but, considering the high nonideality of the 

system oil/FFA/FAME/methanol/water, the usage of UNIQUAC model appears to be more convenient.  
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