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Several pollutant dispersion models have been developed to provide subsidies for environmental impact 

assessment and monitoring of natural resources such as air, soil and water. In this work, we solve the one-

dimensional advection-diffusion equation using an adaptive-step algorithm for the analysis of pollutant 

dispersion and compare it with other recent work, obtaining very similar results for two solute dispersion 

scenarios, one along steady flow through inhomogeneous medium and another along uniform flow through 

homogeneous medium. Our method is characterized by low computational time and simplicity of the code, 

and may contribute as a numerical background for pollutant source management. 

1. Introduction 

Several factors may influence the accumulation or dispersion of pollutants, such as the emission source 

characteristics, the emission rate, meteorological factors and land use (Lora, 2002). The advection-

diffusion equation Eq(1) may be used to estimate air pollutant concentration levels in a given location and 

is also applied in other areas, such as dispersion analysis in water surface, soil mechanics and petroleum 

engineering (Savovic and Djordjevich, 2012). In one space dimension, the advection-diffusion equation is 

written as: 

       

  
 

 

  
       

       

  
                  (1) 

where C(x,t) is the dispersing pollutant concentration at position x along the longitudinal direction at time t. 

D and u are constants, called dispersion coefficient and uniform flow velocity, respectively.  

Various pollutant dispersion model have been developed, such as AERMOD ("AMS/EPA Regulatory 

Model") and Industrial Source Complex (ISC), both developed by the US-EPA ("United States - 

Environmental Protection Agency") for estimating the concentration of atmospheric pollutant being 

applicable to a wide variety of emission sources.  

Savovic and Djordjevich (2012) employed the explicit finite difference method for solving one-dimensional 

advection-diffusion equation, using variable coefficients in semi-infinite media for three dispersion 

problems: solute dispersion along steady flow through inhomogeneous medium, temporally dependent 

solute dispersion along uniform flow through homogeneous medium and solute dispersion along 

temporally dependent unsteady flow through inhomogeneous medium. Considering the existence of a 

continuous point source for all the situations, the results obtained by the authors showed good agreement 

with analytical solutions discussed in the literature.   

A similar study was developed by Singh et al. (2012), who derived an analytical solution for the space-time 

variation of contaminant concentration in one-dimensional uniform groundwater flow in a homogeneous 

semi-infinite porous formation subjected to time-dependent source contamination, using Laplace transform 

technique. Two cases of temporally dispersion along uniform flow are simulated, with an uniform source 

concentration and with mixed-type boundary conditions. The results were obtained for two expressions of 

temporally dependent dispersion, sinusoidally and exponentially increasing forms. The analytical solution 
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purposed by the authors was validated using the same set of inputs adopted by Jaiswal et al. (2009), 

except for the decay rate coefficient. 

Another analytical solution to the one-dimensional advection-diffusion equation was developed by 

Mazaheri et al. (2013), considering several point sources. Initially, a solution for linear pulse point source 

was obtained using Laplace transform technique. Based on this solution, the superposition principle was 

employed to extend the derived solution for several point sources through arbitrary time pattern. After 

performing four tests, constant pulse source, instantaneous spill, decaying point sources and several point 

sources with irregular patterns, the results showed that the purposed analytical solution can provide 

accurate estimation of the concentration.  

Kaabeche and Belbaki (2013) solve the one-dimensional advection-diffusion equation for investigating the 

coupling effect of non-linearity adsorbed solute dispersion and chemical heterogeneity, using the Finite 

Volume Method to discretize the partial differential equation. Numerical results obtained by the authors 

showed that nonlinear interactive solute transport differ from that in the homogeneous one. It was 

observed that chemical heterogeneity cannot be ignored in predicting the breakpoint and that fixing the 

heterogeneity of the medium, the porous media length has also an effect. Appadu (2013) use three 

numerical methods to solve one-dimensional advection-diffusion equation, an explicit, an implicit, and a 

nonstandard finite difference scheme, with specified initial and boundary conditions, for which the exact 

solution is known using all these three schemes. The author observed that the explicit Lax-Wendroff 

scheme, in general, is the most efficient method followed by the nonstandard finite difference scheme. 

Another factor was verified, that the choice of space and time step sizes affected expressively the results.  

A fairly used tool in dispersion analysis in Computational Fluid Dynamics (CFD), which solve the Navier-

Stokes equation using different kinds of refinement depending of the goal. Velocity is divided in mean and 

fluctuation components, using turbulence model in order to close the equation systems. CFD model 

require solving continuity, momentum and energy equations. CFD software solve advection-diffusion 

equation using discrete approach, involving discretization in space and time (Lauret et al., 2014). 

Modenesi et al. (2004) use CFD to analyse the dispersion of an effluent from REPLAN (PETROBRAS 

refining unit) on the Atibaia River in São Paulo, Brazil. The authors observed that the effluent is dispersed 

in a distance of 485 m after the releasing point, where concentration becomes constant. As main vantages 

of CFD, it was emphasized the speed while performing the simulation. 

Gousseau et al. (2011) compare the convective and turbulent mass fluxes predicted by two approaches, 

solving the Reynold's-averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES), for two 

configurations of isolated buildings with distinctive features. It is shown that when the source is located 

outside of recirculation regions, both LES and RANS can provide accurate results. The authors conclude 

that the choice of the appropriate turbulence model depends on the configuration of the dispersion 

problem under study.  

Dourado et al. (2012) evaluates the use of two CFD models (LES-Dynamic Smagorinsky and LES-Wale) 

and two regulatory dispersion models (AERMOD and CALPUFF) to assess odour impact, comparing the 

average concentration results obtained by each model with experimental wind tunnel data. Peak-to-mean 

concentration ratio (P/M) concentration ratio estimated by the regulatory models were underestimated 

when compared to CFD results and wind tunnel measurements. Results obtained by the authors indicated 

that CFD can provide good estimates of the concentration field, its fluctuation intensity and thus, the peak-

to-mean concentration ratio, making it a viable tool for studying fluid flow characteristics for odour impact 

assessment.   

This study aims to determine whether the use of a numerical method, employing an adaptive-step Runge-

Kutta algorithm (Wolfram Research, 2012), to estimate pollutant concentration, is satisfactory compared to 

other existing models in the literature.   

2. Theoretical background 

In this work, we have solved the one-dimensional advection-diffusion equation Eq(1) using an adaptive-

step algorithm. Even though there are analytical and statistical tools for estimating the concentration of 

pollutant, such as Gaussian methods (Lora, 2002), they cannot solve partial differential equations (PDE's) 

with non-linear terms. When the nonlinearities in the PDE's cannot be neglected, the use of numerical 

integration methods is essential for obtaining an accurate solution for differential equations (Potter, 2004). 

Savovic and Djordjevic (2012) have solved the one-dimensional advection-diffusion equation with variable 

coefficients in semi-infinite media using explicit finite difference method for three dispersion problems with 

continuous point sources.  
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For the first scenario, characterized by a medium inhomogeneity that causes variation in the flow velocity, 

the concentration distribution as a function of time was obtained by solving Eq(2). The authors assume 

that dispersion parameter is proportional to square of the velocity: 

       

  
                  

       

  
          

        

                 (2) 

where a accounts for the medium inhomogeneity (10
-3

 m
-1

), u is the uniform flow velocity (10
3
 m/y), D is 

the dispersion coefficient (10
6
 m

2
/ y), t is the time (y) and x is the distance (10

3
 m). 

For the second scenario, a temporally dependent solute dispersion along uniform flow through 

homogeneous medium, it was considered an uniform and steady longitudinal flow in a semi-infinite 

homogeneous and initially solute-free medium. The concentration for this scenario was obtained according 

to Eq(3), 

       

  
    

       

  
          

        

   
    (3) 

where m is a coefficient having dimension reciprocal to time t, and is considered proportional to (u0
2
/d0

2
). 

Savovic and Djordjevich (2012) also simulated a third scenario, solute dispersion along temporally 

dependent unsteady flow through inhomogeneous medium. As in the first scenario, it's assumed that the 

inhomogeneity causes a linear increase in velocity and that dispersion is proportional to square of velocity. 

The flow is supposed to vary with time hence dispersion is also supposed to vary temporally in the same 

proportion.  

3. Results and discussion 

3.1 Convergence 

In a variable-step integration algorithm, the maximum allowed step size is a critical parameter. Using the 

same initial and boundary conditions adopted by Savovic and Djordjevich (2012), we performed 

convergence tests using different maximum step sizes in the equation solver for both scenarios when 

compared with that paper.  

The results are displayed in Figure 1, where we show the ratio between C(x,t) and C(0,t) as a function of 

the distance to the source. The solution converges fast using a step of 0.1 year and 0.1 kilometre in both 

scenarios. To ensure the accuracy of results, we adopt the maximum step size of 0.001 for both 

parameters in our simulations. 

3.2 Solute dispersion through an inhomogeneous medium  

The solutions obtained with the numerical integration of Eq(2) are shown in Figures 2 and 3 where we 

show the ratio C/C0 as a function of the distance to the source for several values of the time. Results 

obtained by our method are very similar to those obtained by Savovic and Djordjevich (2012). As already 

expected, ratio C/C0 increases with time and starts decreases with distance, being less than 0.2 for 

distances larger than 2 kilometres from the source, considering time up to one year, when solute 

 

 

Figure 1: Convergence of the solution for solute dispersion through homogeneous medium (left) and for 

temporally dependent solute dispersion along uniform flow through homogeneous medium (right).The time 

was fixed to t = 0.1 y for some values of the maximum allowed step size 
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Figure 2: Ratio C/C0 to distances up to 4 kilometres from the source considering time up to one y for solute 

dispersion through inhomogeneous medium 

 

 

Figure 3: Ratio C/C0 to distances up to 8 kilometres from the source considering time of one to two y for 

solute dispersion through inhomogeneous medium 

dispersion occurs through an inhomogeneous medium (Figure 2).  

We also have performed simulations considering time of one to two years. According to Figure 3, it was 

observed that ratio C/C0 decreases more slowly than for time up to one year and that there is a minor 

difference in the ratio variation with t adopted. It is noticed that for distance of 8 kilometres, there is still 

influence of the source in the solute concentration.  

3.3 Temporally dependent solute dispersion along uniform flow through homogeneous medium 

As in the first scenario, the result of numerical integration of Eq(3) using our method have showed a good 

agreement with those obtained by Savovic and Djordjevich (2012). According to Figure 4, the ratio C/C0 for 

a temporally dependent solute dispersion along uniform flow through homogeneous medium decreases 

faster than solute dispersion through an inhomogeneous medium. For time up to 1.0 y, the ratio C/C0 is 

close to zero for distances larger than 3x10
3
 m showing that solute is largely disperse, unlike the other 

scenario. 

As observed for solute dispersion through inhomogeneous medium, the ratio C/C0 decreases more slowly 

for time of 1 to 2 years than for shorter times and there is a minor difference in the ratio variation with t 

adopted in this range. However, for temporally dependent solute dispersion along uniform flow through 

homogeneous medium, for more than 4 kilometres from the source, the ratio C/C0 is close to zero, 

indicating that solute is already largely dispersed in this scenario (Figure 5). It's noticeable that ratio C/C0 
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Figure 4: Ratio C/C0 to distances up to 4 km from the source considering time up to one y for temporally 

dependent solute dispersion along uniform flow through homogeneous medium 

 

Figure 5: Ratio C/C0 to distances up to 8 kilometres from the source considering time of one to two y for 

temporally dependent solute dispersion along uniform flow through homogeneous medium 

in Figures 4 and 5 reaches zero with shorter distances than in Figures 2 and 3, indicating that medium 

homogeneity facilitate solute dispersion. 

3.4 Method advantages 

As presented in sections 3.1 and 3.2, the results were consistent and as method advantage, we appoint 

the fact of being simpler than methods adopted by other authors, such as explicit finite difference, Laplace 

transform technique and generalized integral transform technique, and the fact of being able to solve a 

wide variety of differential equation systems with initial and boundary conditions pre-established. Other 

factors may be considered, such as low computational time, rapid convergence and only a few lines of 

code. 

4. Conclusion 

We have used a variable-step numerical integration algorithm for solving the one-dimensional advection-

diffusion equation with the same initial and boundary conditions adopted by Savovic and Djordjevich 

(2012), obtaining very similar results. We observed that the ratio C/C0 decreases faster for temporally 

dependent solute dispersion along uniform flow through homogenous medium than for solute dispersion 

through inhomogeneous medium, and that for both scenarios, the ratio C/C0 decreases more slowly with 

distance for time of one to two years than for shorter times. 

The method used in this work estimates pollutant concentration as function of emission time and distance 

from the source with a simple code and low computational time, and may contribute as a numerical 

background for pollutant source management.  

We have also made a detailed investigation on the behavior of the advection-diffusion equation as we 

change the parameters           independently. The results provide an interesting quantitative view of the 

one-dimensional problem and will be presented in a longer paper. In future works, we plan to extend our 
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method to the two and the three-dimensional cases, which will enable applications such as forecasting 

critical episodes of pollution and development of surveillance systems. 
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