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Monitoring of energy consumption is central importance for the energy-efficient operation of chemical 

processes. Fault detection and process monitoring systems can reduce the environmental impact and 

enhance safety and energy efficiency of chemical processes. These solutions are based on the analysis of 

process data. Data reconciliation is a model-based technique that checks the consistence of 

measurements and balance equations. Principal component analysis is a similar multivariate model based 

technique, but it utilises a data-driven statistical model. We investigate how information can be transferred 

between these models to get a more sensitive tool for energy monitoring. To illustrate the capability of the 

proposed method in energy monitoring, we provide a case study for heat balance analysis in the well-

known Tennessee Eastman benchmark problem. The results demonstrate how balance equations can 

improve energy management of complex process technologies. 

1. Introduction 

Over the last ten years the global energy consumption increased by 30 % (Rühl, 2013). Chemical 

companies are faced with rising energy and material costs. Increasing energy efficiency and reducing 

energy usage become the most important factors of competitiveness.  

Energy efficiency can be defined in several ways (Xia and Zhang, 2010):  

 Performance efficiency is characterised by production,  

cost, energy sources and environmental impact. 

 Operational efficiency is evaluated by considering the proper coordination  

of different system components. 

 Equipment efficiency is indicated by capacity,  

specifications and standards, constraints, maintenance. 

 Technology efficiency includes the reduction of life cycle cost and coefficients in the conversing/ 

processing/transmitting rate, in addition improving of the novelty and optimality of processes. 

Energy monitoring systems can be used to improve energy efficiency and reduce the energy consumption. 

The purpose of energy management is “to enable understanding of energy consumption data; identify 

underlying factors which impact upon consumption; and set appropriate targets that allow you to review 

performance” (Carbon Trust, 2010). Monitoring systems improve the energy efficiency in processes, 

because these systems calculate actual energy use, estimate the needed energy for normal operation and 

highlight where energy use can be improved. These systems can detect energy wastages caused by 

human error, equipment malfunction or poor process control. Significant difference between measured and 

theoretically required values indicates the abnormal behaviour. These abnormal situations can cause a 

significant impact on the safety and economy of the process industry. When the monitoring system 

responds fast and supports the control of the unusual situation, the economic loss can be significantly 

reduced. A detailed overview of these systems is given in Bayindir et al. (2011).  

In chemical processes robust methods are required for process monitoring due to the safety, economic 

operation and production specifications.  

Multivariate statistical data-based models techniques are powerful tools for process monitoring. Although 

multivariate statistical models do not directly reduce operation costs, when financial indicators are 
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calculated based on exact and accurate process values a more realistic picture is available for the decision 

makers.  

The most commonly used model is the Principal Component Analysis (PCA). PCA is applied in various 

areas of chemical engineering, e.g. process monitoring, quality control, disturbance detection, sensor fault 

diagnosis and process fault diagnosis (Misra, 2002). When a priori model is not available, measured 

values involve the model, because process variables are linked by a set of constraints, e.g. balance 

equations. Using PCA the correlation among variables can be found under normal operating conditions 

and information can be extracted from process data. The main idea of PCA is to replace a large number of 

interrelated variables by a few uncorrelated variables (Wold, 1987).  

The performance of model based process monitoring systems highly depends on the quality of the model. 

Hence, good PCA based solutions require accurate and validated historical process data with high 

information content. Measurements are always affected by errors due to imperfect instruments, signal 

transmission, power fluctuation, improper instrument installation and miscalibration. To minimize random 

errors pre-processing of data is necessary. Data reconciliation (DR) technique is a useful tool, because 

this method uses the balance equations and physical-chemical laws so the consistency of data is 

provided. Jiang et al. (2013) summarized the principle of DR and presented a study to illustrate the 

capability of data reconciliation for operational data accuracy. Sometimes it is difficult to measure 

important variables, which influence the energy uses, e.g. steam flow. In this case, DR technique is used 

to reconcile the measurements and to estimate unmeasured variables. DR and PCA were already 

combined in some applications. It has been shown that data reconciliation can improve the quality and 

sensitivity of PCA model by reducing the number of principle components (Amand, 2001).  

In this paper we show a stronger relationship between PCA and DR techniques and we propose a 

multivariate model based energy monitoring system using the synergistic combination of PCA tools, data 

reconciliation and flowsheeting simulator.  

The paper is organised as follows: in Section 2 we describe the synergy between PCA and DR. The 

application of the proposed fault diagnosis system is illustrated in energy balance of Tennessee Eastman 

Process. In Subsection 3.1 the analysed process is introduced. The results are presented in 

Subsection 3.2. Section 4 summarizes the paper with same key results. 

2. Similarity of PCA and DR projections 

PCA and DR both perform optimal projection of the process data into a (linear) multivariate model. The 

model of PCA is defined by the covariance matrix of the data, while the model of the DR is defined by 

material and energy balance equations, usually given in a system of linear equations,      (A is 

incidence matrix, x vector contains variables and b is the source vector). The classical data reconciliation 

is formulated by the following equation: 

          
       

            
       

             (1) 

where x represents the measured variables, I is an identity matrix,     is the variance matrix of the error, 

PDR is the projection matrix and c is a constant shift vector.  

The Projection matrix of PCA is determined based on covariance matrix of normalized data pairs. The 

covariance matrix (F) is decomposed three matrices with singular value decomposition:       , where 

the columns of U are eigenvectors of covariance matrix, the diagonal elements of S are the eigenvalues, 

and the columns of V is represent the right singular vectors. According to the number of principal 

components (p), the first p columns of eigenvectors are selected, and the projection matrix is formulated 

based on these p vectors as: 

       
     (2) 

To compare projection matrices Krzanowski similarity factor is applied. Krzanowski (1979) defined a factor 

to measure the similarity between matrices by comparing the hyper planes spanned by eigenvectors.  

This factor characterizes the angle (Θ) between two hyper planes, because Krzanowski similarity factor 

shows the squared cosine values between all the combinations of the first p principal components from 

two matrices (X, Y): 

          
 

 
       

 

   

    

 

   

 
          

         
      

 
 

where Up matrix contains the eigenvectors, p is the number of principal component. 

(3) 
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Figure 1: The normal vector of the plain is determined by the neglected principal component (PC3) 

The concept is illustrated in three dimensions (see Figure 1). In this example the third principal component 

is (PC3) perpendicular to the plane determined by the data, so the neglected eigenvector as a normal 

vector of the plane can define the coefficients in equation of plain, like           . 

This interpretation is useful when a data – driven model is needed, so balance equations should be 

detected from the correlation between variables. It should be noted that this approach results in the 

application of total least squares (TLS) technique. TLS is type of errors-in-variables regression, in which 

observational errors on both dependent and independent variables are taken into account (Ganger, 2008). 

With the use of this approach not only the projection matrix of PPCA can be calculated and its similarity to 

the projection matrix of PDR can be evaluated, but by using TLS coefficients parameters of the balance 

equations can also be (re)calculated.  

These approaches are verified based on a case study detailed in Section 3. Projection matrix of data 

reconciliation and principal component analysis are compared based on Krzanowski similarity factor. 

Based on data (which come from the process) we determine the relationship between the variables. The 

results demonstrate how balance equations can improve energy management of complex process 

technologies. 

3. Results and discussion 

In this work we use energy balances of Tennessee Eastman Process to illustrate the synergy between 

projection matrices of data reconciliation and principal component analysis. In this section we use the 

nomenclature of Tennessee Eastman Process, so users of Tennessee Eastman model can easily identify 

variables if they would reproduce our experiments. The numbers after the variable name identify streams 

in system (Figure 2 helps coupling the streams and numbers). 

The operating cost (TS) of the technology is determined by the loss of raw materials (purge stream, 

byproducts and dissolved reactant in product), compressor work and steam flow: 

                                     (4) 

where PC, PrC, CC and SC are the cost of purge, product stream, compressor and steam, FTM(9), 

FTM(13) are the component flow of purge and product streams, CW is the compressor work, FS is the 

steam rate.  

In this study we do not examine how optimization and decision support techniques rely on examined 

variables and how these variables influence the manipulated variables. We only deal with the reliability of 

the measurements and how this uncertainty appears in the estimated operating costs.  

This equation draws attention to importance of accurate measurement of flow rate. In this paper we 

analysed the effect of flows rates to total cost and present the role of DR and PCA in energy balances.  

In Subsection 3.1 we present this process and highlight the analysed parts of technology. Simulation 

results can be found in Subsection 3.2. 
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Figure 2: Analysed streams in Tennessee Eastman Process (numbers identify streams in Eq(5)) 

3.1 Tennessee Eastman Process 
Downs and Vogel (1993) prepared a process model of an industrial chemical process to develop, study 

and evaluate process control technology. This model is often used for evaluate and compare different 

data-analysing methods.  

The system includes five major unit operations: reactor, condenser, gas-liquid separator, compressor and 

stripper. The gaseous reactants are fed to the reactor. In reactor four reactions take place: all reactions are 

exothermic and irreversible. The reactor product stream (in gas-phase) passes through a cooler for 

condensing the products and in the separator the two phases (products and reactant) are separated. The 

reactants are recirculated; purge stream removes inert components and byproducts from system. The 

liquid stream of separator contains dissolved reactants which are removed in stripper. The bottom stream 

of stripper is the product; the overhead stream recycles back to the reactor feed. 

In Figure 2 we highlight the analysed streams and heat sources. The energy balances of operation units 

can be defined easily in a matrix form:     . 
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where FTM is the mole flow of streams, HST is the specific enthalpy of streams (it depends on the 

composition and temperature of stream), RH is the released reaction heat, UAR and UAS are the 

transferred heat to water in reactor and separator, UAC is the transferred heat from steam, TWR is the 

reactor temperature, TWS is the separator temperature and TCC is the stripper temperature.  

Measurements of process variables are always affected by errors, so variables do not satisfy energy 

balances. Data reconciliation can minimize the balance error (    ) by optimal projection of the project 

variables to the model equations. 

Table 1: Square balance error (sum(mean((Ax-b)
2
)) and specific total cost (TC) in case of raw and different 

ways reconciled values 

x vectors Square balance error TC ($/h) 

Raw measurements  12.0662 55,975 

Reconciled values with time-dependent A and b matrices   6.72 10
-29

 54,271 

Reconciled values with time-independent A and b matrices   1.21 10
-28

 54,924 

Projected points with PCA (5 principal components)   0.5899 56,084 

Projected points with PCA (7 principal components)   0.5974 55,974 
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Figure 3: a) Comparison of measured, reconciled with time-dependent and time-independent projection 

matrix and projected values in case of product stream. b) Similarity of eigenvectors of projection matrix of 

PCA and DR 

These model equations represent the dependency of process variables (e.g. stream 11 is the liquid 

product of separator and the inlet stream of stripper, so the enthalpy of the outlet and inlet stream should 

be identical – apart from the heat loss in pipeline). PCA can also detect such relationship, so the combined 

application of PCA and DR can increase the sensitivity and accuracy of energy balance based energy 

monitoring.  

3.2 Results and discussion 
Firstly we compared the projections of DR and PCA and we analysed how they influence the estimation of 

the total cost of process. Since temperature is measured more accurate (0.1 - 0.5 %) than flow rates  

(1.5 - 3 %) (Lipták, 2003), we assumed perfect temperature measurements and focus on balancing the 

flow rates. This assumption allows the application of linear data reconciliation. Since temperature varies in 

time, therefore elements of incidence and source matrices (which are non-linear function of the 

temperature) can change over time resulting in a linear parameter varying (LPV). Table 1 shows that 

projections based on time dependent or time-independent A and b matrices are almost identical, so the 

process in the studied operating regime is almost linear. Principal component based projection also 

increases the reliability of the data, so indirectly it also reduces the balance error. 

The last column of Table 1 highlights that value of total cost depends on the quality of the variables. It 

should be noted that neither PCA nor DR reduces the total cost but these techniques give more realistic 

cost estimation. To illustrate the similar effects of these techniques Figure 3a shows reconciled and 

projected values of mole flow of A stream (FTM(1)).  

We also calculated the Krzanowski similarity factor (see Figure 3b) to compare the eigenvectors of the 

projection matrices of DR and PCA.  

In the third step we examined how we can get information about balance equation from data using TLS 

based interpretation of the eigenvectors. Data from steady state operation were analyzed because we tried 

to avoid the unhandled effects of process dynamics. The heat balance of separator (2
nd

 model equation is 

Eq.5 which contains four variables) is used for the demonstration of the approach. We collected the 

necessary data from simulator (FTM(8:11)). Eigenvalues of the covariance matrix of the data show that 

there is a strong connection between variables. The first tree principal components define a hyperplane 

and the remaining one eigenvector defines the parameters of the equation defining of this plane. TLS can 

estimate these parameters: 

                                   (6) 

Since PCA is based on normalized process values, the extracted equation describes the relationship 

between the normalized variables. When the effect of the normalization is taken into account it can be 

shown that the extracted model identical to the balance equation, so the PCA based Eq.6 defines the 

same hyperplane as balance equation based data reconciliation.   

The proposed technique can be used to verify PCA and DR models and detect significant changes in the 

process affecting energy efficiency.  
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4. Conclusions 

Energy monitoring requires validated data and informative alarms related to abnormal operations.  

Principal component analysis and data reconciliation are widely used techniques to improve the accuracy 

and reliability of data.  We found strong relationship between these techniques, and we presented how we 

can infer the coefficient matrix of DR from the projection matrix of PCA.  

The whole concept is illustrated based on the well-known Tennessee Eastman case study. In this study we 

assumed perfect temperature measurement and balanced flow rates. The resulted linear parameter 

varying model gave almost the same performance as a global linear model, so we showed that in the 

studied operating regime linear data reconciliation technique can be effectively applied. The operating cost 

of the technology has been calculated to show the effect of the projections. It has been shown that 

increasing the reliability of the data highly modifies the estimated cost, so PCA and DR are useful tools 

when the estimated cost is used in real time control or optimization. In further work we analyse how model 

equations of DR and PCA can be merged together, how the analogy of the two techniques can be 

demonstrated in more complex examples, and how temperature measurements can be balanced to further 

improve the accuracy of cost estimation.  

Acknowledgements 

The research of Barbara Farsang and Janos Abonyi was realized in the frames of TÁMOP 4.2.4.A/2-11-1-

2012-0001 „National Excellence Program – Elaborating and operating an inland student and researcher 

personal support system convergence program”. The infrastructure of research is supported by the frame 

of the TÁMOP 4.2.4.A/11/1-KONV-2012-0071 project. The projects were subsidized by the European 

Union and cofinanced by the European Social Fund. 

References 

Amand T., Heyen G., Kalitventzeff B., 2001, Plant monitoring and fault detection: Synergy between data 

reconciliation and principal component analysis, Computers & Chemical Engineering, 25, 501-507, 

DOI: 10.1016/S0098-1354(01)00630-5. 

Bayindir R., Irmak E., Colak I., Bektas A., 2011, Development of a real time energy monitoring platform, 

International Journal of Electrical Power & Energy Systems, 33, 137-146, DOI: 

10.1016/j.ijepes.2010.06.018. 

Carbon Trust, 2010, Monitoring and Targeting, <www.carbontrust.com/media/31683/ctg008_monitoring_ 

and_targeting.pdf>, Accessed 07.02.2014. 

Downs J. J., Vogel E. F., 1993, A plant-wide industrial process control problem, Computers & Chemical 

Engineering, 17, 3, 245-255, DOI: 10.1016/0098-1354(93)80018-I. 

Ganger W., 2008, The Singular Value Decomposition, <www.math.ethz.ch/education/bachelor/lectures/ 

hs2012/other/linalg_INFK/svdneu.pdf>, Accessed 15.03.2014. 

Jiang X., Liu P., Li Z., 2012, A data reconciliation based approach to accuracy enhancement of operational 

data in power plants, Chemical Engineering Transactions, 35, 1213-1218 DOI:10.3303/CET1335202. 

Krzanowski W., 1979, Between-groups comparison of principal components, Journal of the American 

Statistical Society, 74, 367, 703-707, DOI: 10.1080/01621459.1979.10481674. 

Lipták B.G., 2003, Instrument Engineers’ Handbook, Volume 1, Fourth Edition: Process Measurement and 

Analysis, CRC PRESS, Boca Raton, Florida, United States of America, ISBN: 0-8493-1082-0 (v. 1) 

Misra M., Yue H.H., Qin S.J., Ling C., 2002, Multivariate process monitoring and fault diagnosis by 

multiscale PCA, Computers & Chemical Engineering, 26, 1281-1293, DOI: 10.1016/S0098-

1354(02)00093-5. 

Rühl C., 2013, BP Statistical Review of World Energy 2013, <www.bp.com/en/global/corporate/about-

bp/energy-economics/statistical-review-of-world-energy-2013.html>, Accessed 07.02.2014. 

Wold S., Esbensen K., Geladi P., 1987, Principal Component Analysis, Chemometrics and Intelligent 

Laboratory Systems, 2, 37-52, DOI: 10.1016/0169-7439(87)80084-9. 

Xia, X., Zhang, J., 2010, Energy efficiency and control systems-from a POET perspective, Methodologies 

and Technology for Energy Efficiency, 1, 255-260, DOI: 10.3182/20100329-3-PT-3006.00047. 

 

http://www.math.ethz.ch/education/bachelor/lectures/hs2012/other/linalg_INFK/svdneu.pdf
http://www.math.ethz.ch/education/bachelor/lectures/hs2012/other/linalg_INFK/svdneu.pdf

