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Integration of scheduling and control can improve the overall performance of a manufacturing process. 

However, the integration leads to a mixed-integer dynamic optimization problem (MIDO), which could be 

challenging to solve. We propose a novel algorithm based on the generalized Bender decomposition 

method that takes advantage of the special structure of the integrated problem. It decomposes the binary 

variables from the dynamic optimization. The resulting master problem is a mixed integer linear program 

(MILP) while the primal problem is a coupled dynamic optimization. Compared with the conventional 

simultaneous method, the proposed decomposition algorithm can reduce the computational time by over 

one order of magnitude in a case study. 

1. Introduction 

Scheduling and dynamic optimization are two important decision levels in process engineering 

(Zamarripaa et al., 2013). Traditionally, the two problems are solved separately (Engell and Harjunkoski, 

2012). The dynamic optimization problem is solved to determine the operational conditions, which provide 

the recipe data for the scheduling problem (Brasielloa , 2013). These recipe data are treated as fixed 

parameters when the production schedule is optimized (Chu and You, 2014a). However, it has been 

recently demonstrated that a collaborative optimization approach which solves the integrated scheduling 

and dynamic optimization problem simultaneously can significantly improve the overall performance of the 

entire process system because the operational conditions can be optimized along with the production 

sequence and assignments (Flores-Tlacuahuac and Grossmann, 2006). 

The integrated scheduling and dynamic optimization problem is generally formulated as a mixed integer 

dynamic optimization (MIDO) problem (Barton et al., 1998). A common solution strategy for the integrated 

MIDO problem is the simultaneous method (Chu and You, 2012). This method discretizes the differential 

equations by the collocation method (Cuthrell and Biegler, 1987). After the discretization procedure, the 

MIDO problem is reformulated as a mixed-integer nonlinear programming (MINLP) problem. A general-

purpose MINLP solver can be used to solve the MINLP for the integrated problem. Though the 

simultaneous method is straightforward, the reformulated MINLP problem can be very challenging to solve 

(Kheawhom and Bumroongsri, 2013). Considering that multiple products are manufactured in a process, 

the integrated problem typically includes a number of dynamic models describing different operational 

modes for the products. Therefore, a large-scale MINLP problem is frequently reformulated after the 

discretization procedure (Chu and You, 2013a). 

The objective of this work is to develop a fast optimization algorithm to solve the integrated scheduling and 

dynamic optimization problem. It has been demonstrated that an efficient solution strategy is a critical 

issue to implement the integrated method online for handling disturbances and process uncertainties (Chu 

and You, 2013b). In this work, we present a systematic decomposition method based on the framework of 

the generalized Benders decomposition - GBD (Geoffrion, 1972). This method is applied to solve the 

integrated scheduling and dynamic optimization problem for continuous processes in a CSTR, where 

multiple products are manufactured in a cyclic manner (Chu and You, 2013c). 
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The decomposition method separates the binary decision variables from the dynamic optimization. The 

resulting master problem is a simple mixed integer linear programming (MILP) problem. The primal 

problem is a coupled dynamic optimization problem where all dynamic models are optimized 

simultaneously. 

The decomposition method is demonstrated in a methyl methacrylate polymerization process. Compared 

with the popular simultaneous method which solves the integrated problem directly by discretizing the 

differential equations describing the dynamic models, the proposed decomposition method can reduce the 

computational time by more than one order of magnitude. 

2. Model formulation 

An illustrative diagram of the cyclic production in a CSTR is displayed in Figure 1. Multiple products A, B, 

C, D are produced one by one in a cyclic manner. Each product is only produced once in a cycle. After a 

production cycle finishes, another cycle begins with the same production sequence. The main decision in a 

cyclic scheduling problem is to determine the production sequence so that the total cost can be minimized. 
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Figure 1: Illustrative example of the cyclic scheduling problem 

In a traditional scheduling problem, we assume the transition from a product to another has a fixed cost. 

They are fixed parameters when the scheduling problem is solved. However, the transition costs are 

actually variables in practice. We can change them by manipulating the inputs of the dynamic system 

governing the transition. However, the transition cost is coupled with the transition time which also 

determines other components of the total cost, e.g. the inventory cost. Therefore, we cannot optimize the 

dynamic system in each transition period independently (Chu and You, 2014b). It requires simultaneous 

optimization of all dynamic systems and the scheduling decisions that leads to the integrated problem.  

The integrated problem, denoted as (Integration_TS), is formulated as follows (Chu and You, 2013c): 
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The objective is to minimize the total cost which is the sum of the inventory cost and the transition cost. 

k and 
k  respectively denote the transition time and the transition cost in time slot k. a2 and a2 are 

parameters. The main scheduling decision is to assign the time slots to the products. The assignment is 

determined by a set of binary variables  0,1ik  . If 1ik  , then time slot k is assigned to product i. To 

facilitate the subsequent decomposition method, we introduce a copy of the binary variables, denoted 

by ik . They are continuous variables ranging from zero to one. However, they can only have the binary 

value according to the equality constraint (3). Because one product is manufactured only once in a time 

slot and a time slot is used to produce only one product, we have the constraints (5) and (6). 

The dynamic models in time slots are formulated as constraints (7)-(12). The dynamic models are indexed 

by k and there are np dynamic models we need to consider. In each dynamic model, the state variables are 

represented by Xk(t), the inputs by Uk(t), and the outputs by Yk(t). To have a compact expression, we use 

the vector notation. Each state, input, or output vector can include multiple elements. The vector notation 

is applied to the equations as well. The differential equation (7) represents the systems equation and the 

equation (8) determines the outputs. Inequality (9) imposes path constraints on the states, inputs and 

outputs. The initial condition is specified in Eq(10) and the setpoint value is given in Eq(11). The transition 

time 
k  is defined as the length of the time interval from the starting point of the transition to the ending 

point after which the output stays at the setpoint value. Eq(12) gives the definition of the transition cost 

k . For different processes, we have different expressions of the transition cost.  

The dynamic models are coupled with the binary scheduling variables through Eq(13) and (14). These 

equations define the interface between the scheduling model and the dynamic models. The assignment 

variable is used to determine the initial condition and the setpoint value of each dynamic system. The 
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Due to the linking equations and the consensus equality between ik  and ik , the assignment variable ik   

has an strong effect on the dynamic system. When ik  varies, the initial condition and the setpoint are 

changed and in turn all variables regarding the dynamic models are changed. 

3. Generalized Benders decomposition method 

Direct solution to the complicated MIDO problem which integrates the scheduling model with the dynamic 

models can be computationally expensive. A decomposition method is helpful to reduce the computational 

time (Chu and You, 2013d). Generally, GBD consists of several main steps (Geoffrion, 1972):  
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(1) Identify the complicating variables. The presence of these variables makes the optimization problem 

difficult to solve. However, when they are temporarily fixed, the optimization problem with the remaining 

variables turns out to be much easier to solve.  

(2) Project the optimization problem, including the objective function and the constraints, onto the space of 

the complicating variables. The GBD methods typically express the projected objective function by its 

Lagrangean relaxation. In the same way, the projected feasible range can be expressed.  

(3) Decompose the optimization problem into a primal problem and a master problem. The primal problem 

is solved when the complicating variables are fixed. Then the master problem is solved to update the 

complicating variables based on the dual information returned by the primal problem. 

(4) Solve the original problem by iterating between the primal and the master problems. The iteration stops 

when the gap between the lower bound and the upper bound is less than a specified threshold value. 
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Figure 2: Procedure of the decomposition method 

The detailed procedure of the decomposition method is displayed in Figure 2. The iteration is initialized by 

fixing the binary variables at 
0

ik . Then the primal problem is solved with the fixed binary variables. The 

optimal solution, objective function value, and dual variables are returned. The upper bound is updated 

according to the optimal function value. The best solution, which is found till the current iteration, is 

recorded. If the gap between the lower bound and the upper bound falls in the tolerance range specified by 

a given value ε, then the iteration stops and the best solution is returned. Otherwise, the dual information is 
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used to generate a new Benders’ cut constraint in the master problem. Then the master problem is solved 

to update the binary variables and the lower bound of the optimal solution. When solving the master 

problem, we don’t need to search over the values at which the binary variables have once been fixed. We 

can add integer cuts to eliminate these values from the search procedure. The primal problem is 

(Primal I)    
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s.t.  Constraints (4)-(14)  
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The projected problem is the integrated problem with the assignment variables 
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4. Case study 

The case study is a methyl methacrylate (MMA) polymerization process. The dynamic model under 

consideration is a nonlinear free radical polymerization with azobisisobutyronitrile as initiator and toluene 

as the solvent. The detailed reactor dynamic model is given in our previous work (Chu and You, 2013c). 

Table 1: Model and solution statistics of the solution methods 

Method Decomposition Simultaneous 

Number of Iterations 20 ─ 

Total CPU (s) 172.8 2,141.3 

Objective (m.u/h) 212.49 212.49 

Optimal sequence A→B→C→D→E→F→G A→B→C→D→E→F→G 

Gap (%) 1.0 1.0 

Primal 

problem 

Equations 28,669 ─ 

Variables 28,130 ─ 

CPU (s) 171.0 ─ 

Master 

problem / 

Integrated 

problem 

Type MIP MINLP 

Equations 54 28,620 

Variables 
50 (all) 

48 (binary) 

28,130 (all) 

48 (binary) 

Solver CPLEX  SBB 

CPU (s) 1.8 2,141.3 

Gap (%) 0 1.0 

 

 

We initialize the problem with the production sequence A→G→F→E→C→B→D. The variables of dynamic 

models are initialized by the steady state values according to the production sequence. The results of the 
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decomposition method and the simultaneous method are shown in Table 1. The decomposition method 

converges to the optimal solution identical to the one found by the simultaneous method. However, the 

computational time considerably reduces from 2,141.3 s to 172.8 s. The optimal sequence returned is 

A→B→C→D→E→F→G.  

5. Conclusions 

Integrated scheduling and dynamic optimization coordinates the two decision layers. As a result, the 

integrated method can achieve a better performance in optimizing the entire production system than the 

conventional method which solve the scheduling problem and the dynamic optimization problem one after 

the other. However, the integrated problem is a complicated MIDO problem, which is much more 

challenging to solve than the subproblems. To simplify the computational complexity, we proposed a 

decomposition method based on the GBD framework. It decomposed the binary scheduling variables from 

the dynamic optimization. The primal problem was a coupled dynamic optimization problem. The 

decomposition is demonstrated by a case study. Compared with the simultaneous method, the 

decomposition method returned the same optimal solution while it reduced the computational time by more 

than one order of magnitude. The computational efficiency enables the proposed method to solve large-

scale industrial problems which the direct solution method fails to solve. 
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