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In many cases, waste-to-energy (WtE) plants are combined heat and power producers. They are often 

integrated into a central heating system and they also export electricity to a grid. Therefore, they have to 

plan their operation for the next day, next month, etc. However, it may be a challenging task due to 

stochastic nature of some input variables such as varying lower heating value of waste, boiler performance 

resulting in fluctuating steam parameters, irregular internal steam consumption or its export. This paper 

presents a novel tool for a WtE plant operation planning under uncertainty. The crucial part of the tool is a 

stochastic model of a technology. The stochastic model was developed using operational data from an 

existing plant. The model was then implemented into simulation tool and well-known Monte Carlo 

simulation method was applied. Utilization of simulation results for operation planning is described on an 

example and the contribution of stochastic approach is evaluated using historical data. 

Introduction 

This paper deals with heat and electricity production planning in a short-term horizon (one day) in an 

existing waste-to-energy plant. The operator of WtE plant has to estimate the amount of heat dispatched to 

a district heating system (more or less fixed – see section 2) and the amount of electricity dispatched to a 

grid. If the plan is not fulfilled, there are financial penalties according to a contract on deliveries. Complex 

nature of WtE plant technology and some uncertainties (lower heating value of waste, irregular steam 

extraction) make the operation planning complicated. In case of the investigated existing plant, the 

planning is based on  previous experience and on a simple utilization of historical data. In this paper, we 

present simulation-based planning of heat and electricity delivery applying stochastic model of the existing 

WtE plant. The model is based on operational data using linear regression (LR) and artificial neural 

network (ANN) modelling. 

Based on our literature search, improvements in energy management based on simulation and 

optimization are discussed a lot. Salgado and Pedrero (2008) presented a review on short-term operation 

planning on CHP systems. They concluded that stochastic models should be included more frequently. 

Short-term operation planning is also typical for some renewable energy systems (solar, wind). Nemet et 

al. (2012) presented a paper dealing with an increase of solar energy in order to minimize utility 

consumption by rescheduling. Pereira et al. (2014) introduced a mixed integer nonlinear programming 

model to manage power system including wind power plants.  

A good mathematical model describing the system and related aspects is essential. According to Smith et 

al. (2013), data-based (statistical) models are preferred in circumstances where computation time is 

important, when phenomena or properties affecting the process are not fully known, or when the scope of 

application does not require extensive deterministic models. In scientific papers, we can find researches 

using analytical models of WtE plant operation; Kropáč et al. (2012) investigates hazardous waste 

incineration from energy production point of view using balance model developed in W2E software and 

Šomplák et al. (2013) uses balance model for basic design optimization of a new WtE plant. According to 

our literature search, data-based modelling of WtE plant operation has not been published yet. Similarly 
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focused research was presented by Bunsan et al. (2013) where ANN model is used for dioxin emission 

production prediction to plan strategies for pollution reduction. 

We usually use combination of analytical models and data-based models. Our literature search in the field 

of data-based modelling of process units has shown that linear regression models and artificial neural 

network models seem to be the most frequently used, e.g. Mohonraj et al. (2012) presented a review of 

more than one hundred applications of ANN. In comparison with LR models, ANN models can successfully 

identify nonlinear relations between considered variables and are generally very suitable for regression-

type problems. On the other hand LR models show a lower level of complexity than ANN models, which 

can be advantageous in further applications.  

The next section describes the model development of the WtE plant operation. The third section deals with 

simulation tool utilizing the model and application of the simulation tool is presented in the following 

section. The final section provides major conclusions. 

Stochastic simulation model of waste-to-energy plant 

The simplified flow sheet of investigated technology (steam cycle only) is shown in Figure 1. The plant with 

the waste treatment capacity of 300 kt/y serves a city with 1 million inhabitants. There are four boilers with 

waste treatment capacity of 15 kt/h each. They produce steam with temperature of 230 °C and pressure of 

1.2 MPa. Part of steam exiting boilers is utilized in technology and part is exported. Afterwards, it goes to 

the condensing steam turbine with one deregulated extraction. Steam from the extraction is used for feed 

water pre-heating and for district heating. Steam from turbine is condensed in the condenser. Dashed line 

represents steam by-pass which is used for steam turbine regulation.  

We consider two energy outputs to be planned - heat delivery to the district heating system and electricity 

delivery to the grid. The planning of heat delivery has several levels. One year heat delivery (agreed in a 

contract) is divided into months (higher in winter, lower in summer) and consequently into weeks and days. 

So the operator knows the amount of heat to be delivered on the next day and has to decide about the 

next day electricity delivery. It means that the entire process of steam production and utilization has to be 

predicted. It can be done with mathematical model comprising sub-models of important parts of 

technology. 

All included sub-models are summarized in Table 1. First of all, we have to predict amount of steam 

produced in boilers (1, 2, 3, 4). Then, there are steam extractions for boiler on-line cleaning blow-off (5), 

for deaeration (6) and for external technology (7). Remaining steam flow is then utilized in steam turbine 

for heat and electricity production. The model has to address steam parameters changes on deregulated 

turbine extraction. The heat delivery is agreed by the plan and we have to calculate the amount of steam 

used for this. The required steam flow is calculated based on steam enthalpy in deregulated extraction (8), 

which depends on extraction pressure and temperature, and enthalpy drop in a heat exchanger for district 

heating system (11). Since the extraction pressure is measured we can develop a model to predict the  

 

Figure 1: Simplified flow-sheet of WtE technology (dark lines represent steam, light lines represent water) 
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extraction pressure (9). The steam from extraction is then divided to steam for feed water pre-heating (10) 

and steam for district heating system (11). Having all the models (1-11), we can predict all steam flows and 

we can calculate electricity production on the steam turbine (12). We do not assume by-pass utilization 

because it is not desired (steam is not used in combined heat and power production). In real operation, the 

by-pass is used to decrease amount of steam to steam turbine when the electricity production/delivery is 

significantly higher than the planned electricity production/delivery (otherwise there are penalties). 

Let us have a look at the turbine model in more details. The extraction pressure is a function of amount of 

steam at the turbine inlet and amount of extracted steam. The amount of extracted steam is given by 

enthalpy (to meet the heat delivery), which is a function of extraction pressure and temperature. Therefore, 

we have a cycle in the model and we need an iterative algorithm to perform a simulation. Now, we need an 

approach for enthalpy calculation. We have two options how to calculate the enthalpy. For both options, 

the turbine is divided into two stages – before and after extraction. The first option is to implement a basic 

thermodynamic model of the stage before extraction. The other option is to develop a regression model 

where enthalpy is a function of the extraction pressure. The first option is much more challenging mainly 

due to necessary implementation of steam tables. The other option provides much easier way – a 

regression function for enthalpy depending on the extraction pressure. We need a thermodynamic model 

as well but only to generate data for the regression function fitting. So we can use any software enabling 

steam turbine simulation (e.g. Aspen, Chemcad, W2E) to generate data. The best form of the regression 

function is a power function 
b

ex exh a p c   . Figure 2 shows that the fitting is very accurate. 

Most of the sub-systems (1-12) are described by data-based models using LR and ANN. LR models are 

preferred due to easy understanding and implementation. However, ANN models are necessary in case of 

units with more complex nature. Sub-system models are summarized in Table 1 (R – correlation 

coefficient, MAE – mean absolute error). 
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Figure 2: Specific steam enthalpy as a function of extraction pressure 

Table 1:  Summary of sub-systems models (for symbols see Figure 1) 

Sub- system Function Model type R
 

MAE 

Steam from boiler 1  , ,2 ,3 ,4, ,st B st st stm f m m m  ANN 0.81 0.82 t/h 

Steam from boiler 2  , ,2 ,3 ,4, ,st B st st stm f m m m  ANN 0.78 1.05 t/h 

Steam from boiler 3  , ,2 ,3 ,4, ,st B st st stm f m m m  ANN 0.73 0.63 t/h 

Steam from boiler 4  , ,2 ,3 ,4, ,st B st st stm f m m m  ANN 0.92 0.78 t/h 

steam extraction for blow-off - Set by the operator - - 

steam extraction for deaeration  . , ,, ,st dear st B st extechm f m t m   ANN 0.86 0.46 t/h 

steam extraction for external 

technology 
 , , ,st extechm f d hr t  ANN 0.91 0.84 /th 

steam enthalpy  ,st ex exh f p  LR 0.99 0.22 kJ/kg 

extraction pressure  , , ,, ,ex st TG st DHS st p hp f m m m   LR 0.99 5.4 kPa 

steam for feed water pre-heating - Energy balance - - 

steam for district heating system - Energy balance - - 

electricity export  , , ,, ,st TG st DHS st p hPel f m m m   LR 0.99 0.13 MW 
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Looking at Table 1, goodness of fit indicators implies lower prediction accuracy in case of boilers and 

extraction of high-pressure steam. The reason could be either missing independent variable (model input) 

or randomness. In some cases, we cannot handle the first reason because not all model inputs are 

available (no measurement, e.g. lower heating value of waste). Therefore we assume randomness to be 

the only reason and we introduce stochastic part of the models: 

       predicted value model output random number 
 

(1) 

The random number is generated from a probability distribution which is given by probability distribution of 

residuals from the process of model development. Clearly the deviation of residuals for models with lower 

prediction accuracy is higher than for models with good prediction accuracy.  

Stochastic model developed in previous part has to be implemented to a simulation model in order to 

provide appropriate support for the planning of heat and electricity production. We use sequential modular 

approach with aforementioned iterative calculation. The stochasticity is handled by Monte-Carlo 

simulation. Simulation procedure is described in Figure 3. In summary, there are usually thousands of 

simulation runs; each run is with different, randomly generated, numbers. The result is a random variable 

which has to be statistically processed.  
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Figure 3: Scheme of the simulation procedure 

Model application for energy delivery planning 

In the investigated WtE plant, steam is frequently by-passed to regulate Pel. A good operation plan should 

provide smooth realization in real operation without utilization of by-pass because it decreases the 

potential for energy production in cogeneration and results in lower energy efficiency. Let us demonstrate 

the application of the simulation model and its benefits through a case study based on real operational 

data. We chose date 25/07/2013 to be planned because it represents typical operation regarding utilization 

of by-pass (otherwise Pel would have been outside the tolerance interval). All input data are summarized 

in Table 2. 

Figure 4 shows comparison of real Pel, possible Pel and predicted Pel (two hours are missing due to error 

in measurement). The real Pel means real operation recorded in the operation log. The real Pel is 

fluctuating around planned Pel of 6 MW. Possible Pel means to what extent the Pel could be without 

utilizing by-pass and predicted Pel means the result of the simulation/prediction. Figure 4 shows Pel 

planned by operator and tolerance interval for Predicted Pel. We can see that Pel planned by operator is 

about 1 MW lower than predicted Pel. Real Pel is regulated according to it. However, without regulation 

(by-pass utilization) possible Pel could reach significantly higher values. Considering planning based on 

prediction, these values would be within the tolerance interval. As one can see, there are four points below 

(hour 5, 13 ,14, 17) and two above (hour 20 and 22) the tolerance interval. 

The below points would mean decrease of Pth (very slight in hour 5 and 17) to increase Pel at the lower 

limit of the tolerance. The above points would mean only very slight utilization of the by-pass. Summarizing 

the results, the operation based on prediction significantly reduces utilization of by-pass. It brings 

approximately 12.3 MWh of electricity per day extra (about 10 % of total Pel) and fulfills the Pth plan for 

most of the time. 
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Table 2: Inputs for prediction 

Input parameter Value 

Boiler 1 steam output 2/3/4 d before 35.5/35.1/35.0 t/h 

Boiler 2 steam  output 2/3/4 d before 35.3/37.7/8.7 t/h 

Boiler 3 steam  output 2/3/4 d before 0/0/0 t/h 

Boiler 4 steam  output 2/3/4 d before 29.8/30.6/31.6 t/h 

Day Thursday 

Temperature range 19 – 27.4 °C 

Heat delivery (Pth) 9 MW (constant in plan) 
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Figure 4: Comparison of next-day electricity delivery prediction with real delivery 

Now, let us show benefits of stochastic simulation model. The main advantage of stochastic approach is 

the possibility of risk evaluation. When considering randomly fluctuating inputs or influences we obtain very 

different results for Pel as shown in Figure 5a (only three scenarios chosen form one thousand). In some 

cases, the difference reaches almost 2 MW. Considering the tolerance interval range of 1 MW (± 0.5 MW 

from planned Pel), there is a risk of the real Pel being outside the tolerance interval. However, the results 

of all simulation runs can be statistically processed and the risk of not meeting the plan can be evaluated. 

Figure 5b shows cumulative distribution function of Pel obtained processing the Monte-Carlo simulation 

results with plotted median 6.78 MW (proposed plan) and corresponding tolerance intervals (± 0.5 MW). 
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         (a)                         (b) 

Figure 5: (a) Prediction of electricity delivery for different scenarios, (b) cumulative distribution function of 
electricity delivery for hour 1 
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It is easy to calculate probability of failing to fulfil this plan – the risk. In this case, it is about 30 %. It also 

corresponds to the results presented in Figure 4, where the possible Pel is outside of the tolerance interval 

in 6 cases from 22; it is 27 %. 

It could be also beneficial to know in what range Pel could fluctuate with a given probability. For example, 

with probability of 90 % the range is from 6.1 to 7.5 MW. So the operator can be almost sure of the real Pel 

within this range. Analysis of historical data in this sense could provide the operator with crucial 

information for negotiation about the tolerance interval in a contract.  

Conclusion 

The research presented in this paper showed how the development and application of regression models 

may contribute to operation planning improvement in WtE plants. The operation planning of such a 

complex plant is very difficult without a good supportive tool. Moreover, it is tricky due to some 

uncertainties. The typical uncertainty is presented in boilers performance which is caused by heterogonous 

composition of waste. Clearly, the uncertainties can be handled applying stochastic approach. We 

presented a simple stochastic model and applied Monte-Carlo simulation method to predict the electricity 

delivery for a next day planning. The illustrative example based on real operational data showed that 

model-based planning provides higher energy production/efficiency and smooth operation. Moreover, 

when applying stochastic simulation we can estimate the probability of fulfilling the plan, which could be 

very helpful in negotiation about energy delivery contract. However, this should be proven by a long-term 

application in the existing WtE plant. 
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