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This paper presents a neural network based strategy for the modelling and optimisation of distillation 

columns incorporating the second law of thermodynamics. Real time optimisation of distillation columns 

based on mechanistic models is often infeasible due to the effort in model development and the large 

computation effort associated with mechanistic model computation. This issue can be addressed by using 

neural network models which can be quickly developed from process operation data. The computation 

time in neural network model evaluation is very short making them ideal for real-time optimisation. 

Bootstrap aggregated neural networks are used in this study for enhanced model accuracy and reliability. 

Aspen HYSYS was used for the simulation of the distillation systems. Neural network models for exergy 

efficiency and product compositions are developed from simulated process operation data and are used to 

maximise exergy efficiency while satisfying product quality constraints. Applications to Methanol-Water 

and Benzene-Toluene separation columns demonstrate the effectiveness of the proposed method.    

1. Introduction 

The importance of distillation columns continues to increase both in the traditional petro-chemical industry 

and in the sustainable sector with renewable resources and energy. The key role they play in the chemical 

and petrochemical industries and the quest to make them more energy efficient has made distillation 

processes high priority for all stake holders in the industries. For instance there are about 40,000 

distillation columns in the US alone. These distillation columns consume about 40 - 60 % of the total 

energy usage in the chemical and petrochemical industries and 6 % of the total US energy 

(Emersonprocessxperts, 2010). Distillation unit poses a great challenge to control engineers because of its 

complexity. It comes in varieties of configurations with different operating objectives, significant 

interactions among the control loop and specialised constraints. These result in distinct dynamic 

behaviours and different operational degree of freedom that will necessitate the need for specialised 

control configurations in order to optimise energy usage. Usually the order of economic importance in the 

control of distillation column is product quality, process throughput and utility reductions and often traded 

off between them has to be made. Optimisation of distillation column operations is essential in order to 

achieve energy efficiency while meeting product quality constraints.  

Optimisation of distillation columns requires accurate process models. A number of distillation process 

models are available in the published literatures but the complexity of distillation processes has led to a 

number of assumptions that might limit the universality of the models. Most of the mechanistic models of 

distillation systems have assumed equilibrium cases for the stages. Such models deviate from the reality 

and will not give a true representation. To overcome this, non equilibrium stages are assumed (Liang et 

al., 2006). Non-equilibrium models however involve large number of variables, leading to distillation 

models with differential equations that may exhibit high differential index that could generate stiff 

dynamics. Furthermore, such mechanistic models are computationally demanding making them not 

suitable for real-time optimisation. To overcome these problems, data driven models such as artificial 

neural network (ANN) models can be utilised. ANN has been recognised as a powerful tool that can 

facilitate the effective development of models for highly nonlinear and multivariable systems. ANN can 
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learn complex functional relations for a system from the input and output data of the system. Furthermore, 

their evaluation is much less computationally demanding making them suitable for real-time optimisation.  

Most neural network applications to distillation systems target at modelling the product specification as the 

model output (Ochoa-Estopier et al., 2013). Often the economic objective in terms of profitability is the 

focus in the optimisation of such distillation process (Amit et al., 2013). However, with the issues of global 

warming, GHG effects, and depleting source of energy resources, the issue of energy efficiency of 

processes has been brought to the limelight. Quite a number of publications have been on ways to reduce 

the energy consumption of distillation processes via alternate energy efficient arrangement. Of note 

amongst these is the heat integrated distillation column HIDC (Suzuki et al., 2012), thermally coupled 

dividing wall column (Long and Lee, 2014), Petyluk column and intensified distillation column (Kiss et al., 

2013). In addition, previous works on the thermodynamic efficiency of the crude distillation unit revealed a 

high energy and exergy loss of the column (Haragovics and Mizsey, 2012) with the overall efficiency of the 

column ranging from 5 - 23 % (Al-Muslim and Dincer, 2005). This shows that there is a lot of room for 

improvement of the distillation column and indicating a high entropy generation within in column that is 

making the irreversibility of the column to be highly significant. In the past, there have been efforts at 

devising methods of minimising entropy production rate in distillation column. Though most of these 

attempts are targeted at diabatic binary distillation systems (de Koeijer et al., 2002). Also most often, 

distillation columns are optimised in terms of energy usage without paying particular attention to the 

reduction of entropy generation within the column (Kamel et al., 2013). In this work an attempt is made at 

improving the energy efficiency of the distillation column using the tool of applied thermodynamics to 

determine the optimum operating conditions of the column with consideration to energy efficiency and 

product quality. The energy efficiency is however on the basis of reduction in the irreversibility of the 

column. Exergy analysis and optimisation are the major qualitative and quantitative tools that were used in 

the decision making.  

2. ANN Modelling and optimisation 

2.1 Thermodynamic Analysis 

Exergy is from a combination of the 1
st
 and 2

nd
 laws of thermodynamics. It is a key aspect of providing 

better understanding of the process; quantifying sources of inefficiency and distinguishing quality of energy 

used (Rosen and Dincer, 1997). Exergy analysis is a measure of the quality of energy. It is a tool for 

determining how energy efficient a process is. Exergy analysis of processes gives insights into the overall 

energy use evaluation of the process, potentials for efficient energy use of such processes can then be 

identified and energy use improving measures of the processes can be suggested.  

The basis of the exergy concept was laid almost a century ago and was introduced as a tool for process 

analysis in the 1950s by Keenan and Rant. Szargut et al. (1988) introduced the concept of chemical 

exergy and its associated reference states. It is common to use ambient pressure and temperature as 0P  

= 101.325 kPa and 0T = 298.15 K. 

The total exergy of a stream is calculated as  

mixingchemphytotal ExExExEx   (1) 

chemEx  and mixingEx are the chemical and mixing exergy, which in the case of a binary and non reactive 

distillation system are assumed negligible. 

)( 000 SSTHHEx phy   (2) 

H is the total enthalpy, 

S is the total entropy 

0T is the reference temperature 

0H and 0S are enthalpy and entropy measured at reference conditions. 

 

Exergy of the system is calculated as 
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It takes a good engineering judgement to determine the streams that qualified as in and those that qualify 

as out. For a binary system such as the one being considered the in and out are given as  

boiluprefluxreboilerfeedin ExExExExTotalEx 
 

(4) 

bottomsdistillateout ExExTotalEx   (5) 

2.2 Artificial neural Network Modelling 

Here neural networks are used to model exergy efficiency and product composition. The neural networks 

models are then used for exergy efficiency optimisation subject to product quality constraints. Data for 

neural network modelling are generated from simulation. The neural network model for exergy efficiency is 

of the following form: 

),,,,,( 654321 xxxxxxfy   (6) 

Where y is exergy efficiency, x1 to x6 are feed rate, feed temperature, feed composition, distillate and 

bottom composition, and reboiler heat duty. 

Neural network models for top and bottom product compositions use the same model inputs.    

Single hidden layer feedforward neural networks are used to model exergy efficiency and product 

compositions. The quality of the neural network is dependent on the training data and the training method 

(Zhang, 1999). The data were divided  into training data (50 %), testing data (30 %), and unseen validation 

data (20 %). Levenberg-Marquardt training algorithm was used to train the networks. The number of 

hidden neurons was determined by building a number of neural networks with different numbers of hidden 

neurons and tesing them on the testing data. The network giving the lowest sum of squared errors (SSE) 

on the testing data is considered as having the appropriate number of hidden neurons. The final developed 

neural network model is then evaluated on the unseen validation data. For the pupose of comparison, a 

linear model is also built using multiple linear regression (MLR). 

2.3 Optimisation using neural network models 
The optimisation objective is to maximise the exergy efficiency of the column subject to distillate 

composition constraint. The optimisation problem can be stated as 

yJ
X

min  (7) 

s.t.  

),,,,,( 654321 xxxxxxfy   

99.08.0 4  x  

1.001.0 5  x  

Where J is the objective function, x=[x1,x2,x3,x4,x5,x6] is a vector of decision variables, i.e. neural network 

model inputs, and y is the exergy efficiency. The optimisation problem was solved using the sequential 

quadratic programming (SQP) implemented by the function “fmincon” in MATLAB Optimisation Toolbox. 

3. Case Study 

Two binary distillation systems of methanol-water and benzene-toluene separations were considered. The 

nominal parameters for simulation are as given in Table 1. At the steady state, based on the data 

generated in HYSYS, exergy analyses of the systems were performed. The efficiency is 42.43 % and 

47.49 % for methanol-water and benzene-toluene. This is revealing there is room for improvement of the 

process. Subsequently, data for the training of the network were generated by varying the independent 

variables within their upper and lower bounds. Corresponding values of the exergy efficiency were 

calculated. 
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3.1 Linear models 
The sums of square errors for the linear models are given in Table 2. The very large SSE values of the 

linear models indicate that there is strong non-linearity in the relationship between exergy efficiency and 

process operating conditions. This justifies the need to build nonlinear models using ANN.  

3.2 ANN models 
The performance of ANN is hinged on the data, the network structure and the training method. Figures 1 

and 2 show the actual exergy efficiencies (solid curves, blue) and neural network predictions (dashed 

curves, red) on the training, testing, and unseen validation data sets. The SSEs on the training, testing and 

unseen validation data sets are given in Table 2. The numbers of hidden neurons that gave the least SSE 

on the testing data are 17 for methanol-water and 15 for benzene-toluene. The results in Figures 1 and 2 

and Table 2 show that the ANN models give excellent prediction performance. The models can be 

conveniently used to determine the exergy efficiencies of the distillation processes at different operating 

conditions. Usually in the calculation of exergy efficiency, the enthalpies and entropies of all streams 

involved must be determined. The ANN models can be used to predict the exergy efficiencies without the 

rigours of calculating the enthalpies and entropies of the streams. This will be a valuable tool in the hand of 

process design engineers and operators in determining the effects of different operating conditions on the 

exergy efficiency of the distillation process. 

Table1: Nominal parameters for simulation  

 Benzene-Toluene Methanol-Water 

Feed temperature (
o
C) 

Feed pressure (kPa) 

Feed rate (kmol/h) 

Reflux ratio 

Number of trays 

Feed tray 

Distillate rate (kmol/h) 

Bottoms rate (kmol/h) 

95 

101.325 

350 

3.5 

11 

7 

153.4 

196.6 

53 

101.325 

216.8 

1.028 

8 

5 

84.4 

216.8 

Table 2: SSEs from linear models and ANN models 

 Methanol-water Benzene-toluene 

 Training Testing Validation Training Testing Validation 

ANN model 0.0060 0.0054 0.0036 0.0031 0.0099 0.0242 

Linear model 219.826 129.453 83.2434 42.9812 29.3602 25.5340 

  

 

Figure 1: Actual and ANN model predicted exergy efficiency for the methanol-water column 
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3.3 Optimisation 
Sequential quadratic programming (SQP) method was used for the optimisation. The objective function 

maximised was the exergy efficiency subject to the distillate composition constraint. Table 3 gives the 

results of the optimisation procedure for the two systems. The optimum conditions and the base case 

conditions are shown. As a consequence of the optimisation, more feed flow rate and slight change in the 

feed temperatures and feed compositions are required. There is a reduction of entropy generation within 

the systems at these operating conditions and that is why there are corresponding increases in the exergy 

efficiency of the systems.  

 

Figure 2: Actual and ANN model predicted exergy efficiency for the benzene-toluene column 

The distillate compositions were not compromised showing that the desired purity can be maintained with 

a corresponding increase in the exergy efficiency of the system. This increment translates to an increase 

in the energy efficiency of the systems considering the fact that there is an increase in the feed flow rate 

and the reboiler energy was maintained. The optimum operating conditions given by the optimisation 

procedures were simulated in HYSYS. It can be seen from Table 3 that actual (HYSYS simulated) exergy 

efficiencies are very close to the ANN model predicted values. This further demonstrates the suitability of 

the ANN models at the modelling and optimisation of the exergy efficiency of the distillation columns. 

Table 3: Summary of optimisation results 

 Methanol-water Benzene-Toluene 

 Base case Optimum case Base case Optimum case 

Feed rate (kmol/h) 216.8 260 350 450 

Feed temperature(
o
C) 53 60 95 90 

Feed composition(methanol) 0.4 0.3   

Feed composition(benzene)   0.4402 0.35 

Reboiler duty(kJ/h) 6.156e6 6.156e6 7.5e6 7.5e6 

Distillate composition 0.95 0.95 0.95 0.95 

Bottom composition 0.08 0.05 0.19 0.21 

Exergy efficiency (%) 42.43 48.9 47.29 56. 56 

ANN predicted Exergy efficiency (%)  48.63  57. 65 

4. Conclusions 

This study shows that ANN can accurately model exergy efficiency in distillation columns. The ANN 

models are then used in obtaining optimal distillation operation conditions that can maximise the energy 
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performance of distillation systems. Exergy analysis is a much effective way of determining the energy 

efficiency of processes and hence the importance of this study to process and design engineers. The ANN 

model based modelling and optimisation can aid the decision making of energy efficient operations and 

control of distillation columns.  
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