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2. Material and methods 
2.1 Material 
Beech wood chips are used in this study. Their main characteristics are presented in Table 1. 

Table 1: Characteristics of wood chips 

Wood specie Beech 
Particle length 5 - 15 mm 
Particle width 2 - 7 mm 

Particles thickness 1 - 3 mm 
Moisture content 10 - 12 % 

Bulk density 310 kg/m3 

 
Moisture content of wood chips is determined in accordance with standard method NF EN 14774-1: 2010–
01 for each run.  

2.2 Apparatus 
The pilot rotary kiln consists of a rotating cylinder heated electrically. The cylinder is 4.2 m in length and 
0.21 m in diameter and the inner wall is covered by a metal grid to increase the adhesion to the particles. 
The slope can vary between 0 and 7 ° and the rotational speed between 1 and 21 rpm. The furnace is 
composed of five independent heating zones, of 0.5 m length each, as presented in Figure 1. 

 

Figure 1: Schematic representation of the pilot rotary kiln 

The temperature level of each zone can be controlled up to 1,000 °C (with an accuracy of ± 2 °C) and the 
end of the cylinder is outside the furnace, which allows the cooling of treated biomass. 
The feeding system, consisting of a hopper and a vibrating conveyor, is continuously weighed. The inlet 
flow rate of wood chips can thus be controlled accurately. The cylinder is swept with a nitrogen flow to 
have an oxygen-free atmosphere. Several thermocouples are disposed along the kiln to provide a 
temperature profile inside the bed of solid.  
At the end of the cylinder, torrefied wood chips are collected in a metal container. This one is closed 
hermetically and swept with nitrogen to avoid the oxidation of the product during cooling.  
Gaseous species produced by torrefaction are carried away from the reactor with nitrogen to a thermal 
oxidizer. Volatile matters are thus destroyed before being vented out of the chimney. 

2.3 Experimental runs 
Wood chips flow in the rotary kiln has already been studied (Colin et al. 2013). A correlation between the 
bed depth profile and the operating parameters has been established. This profile allows the calculation of 
the solid hold-up – defined as the ratio between the volume of biomass in the cylinder and the volume of 
the cylinder – and of the mean residence time (MRT) of biomass in the kiln. As the residence time and the 
solid hold-up can be driven via the rotational speed, the inclination and the feed rate, the three parameters 
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under investigation in this study are the temperature level, the residence time of biomass in the kiln and 
the solid hold-up. 
It has been chosen to use an isothermal setpoint temperature profile along the kiln to simplify the study.  
Parameters of experimental runs are summarized in Table 2. 

Table 2: Operating parameters (measured or computed) for the experimental runs 

Run 
Setpoint 

temperature 
Rotation 
speed 

Inclination 
Inlet flow 

rate 
MRT Hold-up 

(°C) (rpm) (°) (kg/h) (min) (%) 
1 250 2 2 4 69 9.8 
2 280 2 2 4 69 9.8 
3 280 4 2 4 35 4.7 
4 280 4 2 8 33 9.6 
5 270 2 2 4 69 9.8 
6 300 2 2 4 69 9.8 
7 270 3 1.5 6 55 11.7 
8 270 3 1.5 8 56 16.4 

 
When the steady state is reached, after typically 3 h, an empty container is then placed at the outlet of the 
kiln. The torrefied wood is sampled for 1 h. The filled container is nitrogen-swept and weighed after 
cooling. The mass yield η (in %), defined on a dry basis, is computed according to Eq (1). ߟ = ሶܯ௧ܯ  × ൬1 + 100൰ܪ × 100 (1) 

Where ܯ௧ is the mass of torrefied wood chips (in kg), ܯሶ  is the inlet flow rate of raw wood chips (in kg/h) 
and ܪ is the initial moisture content (wt. %). 
The solid is analysed in terms of volatile matter (VM) and ash contents (AC) in accordance with standard 
methods AFNOR (NF EN 15148:2010-03 and NF EN 14775:2010-03, respectively). The fixed carbon 
content (FC in %) can then be calculated according to Eq (2). ܥܨ = 100 − ܯܸ −  (2) ܥܣ

3. Results 
Results of all runs are summarized in the Table 3. 

Table 3: Mass yield, maximal temperature (Tmax) of the thermocouples and proximate analysis of torrefied 
biomass for each run 

Run 
Mass 
yield 

Temperature  Proximate analysis 
Tmax Thermo

-couple 
 VM FC AC 

(%) (°C)  (%) (%) (%) 
1 98.3 238 5  83.6 15.8 0.6 
2 83.6 286* 5  76.8 22.5 0.7 
3 89.4 277 5  80.2 19.1 0.7 
4 87.1 287* 6  79.5 19.8 0.7 
5 88.2 270 5  79.2 20.1 0.7 
6 75.0 304* 5  72.1 27.1 0.8 
7 89.8 260 5  80.3 19.0 0.7 
8 88.7 277* 6  80.1 19.2 0.7 

Raw - - -  85.0 14.5 0.5 

*setpoint temperature exceeded 

3.1 Effects of temperature and residence time 
To investigate the effect of temperature level, runs 1, 2, 5 and 6 are compared. These four experiments 
have been carried with the same residence time and the same hold-up (see Table 2). In Figure 2, the 
mass yield is presented as a function of the maximal temperature measured and as a function of the set 
point temperature. 
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Figure 2: Effect of the torrefaction temperature on the process mass yield  

As expected (Almeida et al. 2010), the higher the temperature, the lower the mass yield. The slope of the 
regression line depends on the considered temperature. Indeed, the two lines are crossing at around 
270 °C, for a mass yield of 88.2 %. This could reflect that torrefaction becomes exothermic beyond a 
certain temperature, here 270 °C.  
The effect of the mean residence time can be evaluated by comparing the results of runs 2 and 4. The 
higher the residence time, the lower the mass yield. In the two cases, the set point temperature is 
exceeded by 6-7 °C and maximal temperatures measured are very close. In the range studied, the effect 
of residence time on the exothermicity of reactions would be limited.  

3.2 Effect of solid hold-up 
The temperature profiles of the bed of solid are plotted on Figure 3 for runs 3 and 4. Vertical lines mark out 
the five heating zones (HZi), and the two short thermally insulated zones (IZ). 

 

Figure 3: Temperature profile along the kiln for runs 3 and 4 

These two runs were performed with the same set point temperature (280°C) and a similar mean 
residence time (about 34 min). The hold-up reaches 4.7 and 9.6 % for runs 3 and 4, respectively.  
Fortunately, the torrefaction process starts in zones 3 or 4, depending on the operating conditions. The 
three temperatures at the entrance (thermocouples 1, 2 and 3) are below 100 °C, since this part of the 
cylinder is outside the heated shell. In the absence of temperature sensors in zones 1 to 2, drying and 
heating of the dry solid bed cannot be characterized. 
As expected, the temperature of the bed is higher for run 3 in zone 3. For indirectly heated rotary dryers, 
heat transfer to the particles bed occurs mainly by conduction through the covered surface of the tube wall. 
When the hold-up increases, this surface increases slower than the quantity of biomass to heat. 
Consequently, when the solid hold-up is low, the rise in temperature is higher and torrefaction starts 
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