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A model based on Artificial Neural Networks (ANN) to predict the concentration of ethanol, substrate and 
cells from secondary measurements (pH, turbidity, CO2 and temperature) was developed in this work. A 
second generation ethanol production from hydrolyzed sugarcane bagasse was considered as a study 
case. Experimental data were obtained from fermentation in the range of 30 to 38 °C with cell recycle. The 
fermentation feedstock is a mixture of molasses and hydrolyzated bagasse from the alkaline hydrogen 
peroxide pretreatment at 25 % of volume and 75 %, respectively. The accuracy of prediction of the ANN 
model is evaluated by its precision in describing experimental observations, and by the challenges 
involved in the use of online measurements. The model used to describe the fermentation provided a good 
prediction of concentration of cell, substrate and ethanol. 

1. Introduction 
Nowadays, there is an incentive for the development of cleaner and renewable sources of energy aiming 
to meet environmental requirements, to contribute with a broader social development and to reduce the 
political instability and rising prices tendency of fossil fuels (Sawin et al., 2012). Taking this into account, 
the production of biofuels and bioenergy from biomass appears to be a possible alternative that can be 
explored. In fact, the rational use of renewable resources may have a significant contribution in energy 
matrix. In this scenario, Brazil as the largest producer of ethanol from sugarcane has an interesting 
environment since the first generation plants (based on sugarcane molasses and broth) may be used to 
accommodate second generation ethanol process (based on sugarcane bagasse and straw), since the 
raw material is already available and the existing facilities may be shared reducing the investments.  
However, the efficiency of fermentation by Saccharomyces cerevisiae using lignocellulosic feedstock 
depends on the fermentability of sugars from the hydrolyzate which may be affected by inhibitors that are 
by-products of the pre-treatment and hydrolysis process with impact on the kinetics, ethanol produced and 
hence the productivity affecting economically the whole process. This problem can be mitigated by the 
implementation of a better system of monitoring and control to support the robustness of the process 
which, in turn, contributes to the economic viability of this production process of ethanol (Herrera and 
Maciel Filho, 2013). 

2. Experiment 
Experimental data reported by Andrade (2012) were used in this work in order to train, validate and test 
the Artificial Neural Network (ANN). Batch fermentations were carried out in a bioreactor Bioflo III (New 
Brunswick Scientific Co., Inc., Edison, NJ) with 1 L of working volume, stirred by two flat blade turbines, at 
300 rpm, varying the fermentation temperature from 30, 32, 34, 36 and 38 °C and keeping fixed the initial 
substrate concentration at 160 Kg/m3 and initial concentration of cell of 2.8 Kg/m3. Additionally, 
fermentations with cells recycle were performed at 30(2 recycles), 32(4 recycles), 34(5 recycles), 36(4 
recycles) and 38 (3 recycles) °C at the same conditions. In these experiments it was used Saccharomyces 
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cerevisiae grown in the laboratory of Bioprocess Engineering, at Unicamp’s Faculty of Food Engineering. 
The fermentation feedstock is a mixture of molasses and hydrolyzated bagasse from the alkaline hydrogen 
peroxide pretreatment at 25 % of volume and 75 %, respectively. The sensors used for collecting online 
information  of the variables of interest were: a turbidity transmitter (FSC 402 Metter Toledo Ingold Inc. 
USA) for measuring the production medium turbidity, temperature was measure by a thermocouple (N. 
Brusnwick Scientific), CO2 flow rate was measured by a digital gas volumetric flow sensor and pH by a 
glass electrode (both from Cole-Parmer Instrument).  

3. Online Measurements 
Online measurements such as temperature, turbidity, pH and CO2 flow rate were used for predicting 
concentration of substrate, ethanol and cell. These variables were chosen because they are related with 
process concentration which is difficult to measure, or they have a strong influence on productivity, yield 
and substrate conversion in the main final product.  

3.1 Temperature 
It has been shown that temperature, as a control variable, is an important factor in the study of 
optimization and productivity increase of microbial and fermentative process. Precise temperature control 
and profiling are key factors in promoting biomass growth and controlling yield (Vogel and Todaro, 1997). 
Cell growth rates, sugar consumption and inhibition caused by the product and substrate are affected by 
fermentation temperature (Siqueira, 1996). In other studies Andrade (2007) is highlighted the relevance of 
this variable, since to some extent, the microbial growth and the velocities of enzymatic reaction increase 
with temperature increase. Additionally, ethanol toxic effect increases with the temperature increase due to 
the higher fluidity of the cell membrane. Therefore, effect study of this variable is necessary for this 
process since it influences directly its performance and productivity. In Figure 1a, it is possible to observe 
the temperature profiles at 30, 32, 34, 36 e 38 ⁰C considered in this work. 

3.2 Turbidity 
Turbidity is the measurement of solids quantity present in the liquid. It is related to cell concentration 
because as the cell are growing, the free space where the light can go through is smaller, and allowing 
some correlation to be made. Petersen et al. (2011) concluded that online sensors for biomass 
measurement, including turbidity probe, have a promissory future since it is easy to calibrate, to use and it 
possess a higher accuracy compared to multivariable sensors. Also, it was found a good correlation 
between online turbidity measurement and the cell concentration; this was well fitted by a second order 
polynomial. In Figure 1b is observed how turbidity increases as a consequence of cell growth in a 
fermentation process. 

3.3 pH 
Metabolic processes are typically highly susceptible to even slight changes in pH, and therefore, proper 
control of this parameter is critical. Fermentations are performed over a broad pH range values, 
specifically, values between 4 and 5 are suitable for this process. Usually, pH values of industrial 
fermentation broth are in the range of 4.5 and 5.5 with a good buffering capacity, especially those 
prepared with molasses. Fermentations performed in more acidity media, around 3.5 and 4.5, results in 
higher ethanol yields due to a restriction in the yeast growth as well as a diminution of glycerol production, 
and at the same time, bacterial contamination is reduced. However, fermentations are performed well at 
higher levels, in high buffering capacity substrates, like the molasses with pH 5.8/5.9. The sugarcane juice 
is fermented without acidity correction; they are performed in natural pH ranging between 5.2 and 6.8. 
Taking into account these facts, the tolerance to acidity is an important characteristic for the yeast (Lima et 
al., 2001). A negative effect in the ethanol yield and productivity is presented at values below of 3.5. A low 
pH causes loss of nutrients such as nitrogen and potassium, increases the yeast sensitivity to ethanol, 
organic acids and SO2, (Silverio, 2009). 
Precise manipulation of pH can determinate the relative yield of the desired species over competing by-
products (Vogel and Todaro, 1997). Throughout fermentation, the yeast in its metabolic route of ethanol 
production also produces acids which decrease the pH. In the Figure 1c, is observed all pH profiles. Many 
studies about pH influence on fermentation can be found in literature (Nielsen and Arneborg, 2007, Akin et 
al., 2008, Arroyo-López et al., 2009).  

3.4 CO2 flow rate 
Much can be learned from the exchange gases in the metabolic process such as O2, CO2, N2, and NH3. In 
fact, most of the predictive analysis is based upon such calculations as oxygen uptake rate, carbon dioxide 
exchange rate or respiratory quotient (Vogel and Todaro, 1997). 

416



In glycolysis, glucose is converted through a series of reactions to pyruvate, and energy is extracted in the 
form of four ATP molecules. Then, pyruvate is converted to ethanol in a two-step reaction; pyruvate is 
decarboxylated to form the more reactive acetaldehyde, which is reduced to ethanol. For each glucose 
fermented, two ethanol and two CO2 molecules are produced, (Lehninger et al., 2005). From this 
information it can be concluded that CO2 and ethanol are produced in a proportional way, by monitoring 
one of them, it is possible to obtain information of the other one. CO2 production in the fermentation can be 
divided into three stages. In the preliminary stage occur a huge cell multiplication, small temperature 
increase and small CO2 liberation. In the second stage, the CO2 liberation occurs in an intense manner 
due to the large cell number presence in the medium that broken down the fermentable sugar in ethanol; 
the second stage is the longest duration stage. Temperature increases quickly, density is reduced, and 
alcohol and acidity percentages increase. In the complementary stage is observed a decrease in the 
intensity of CO2 liberation until the fermentation culmination (Basso and Lima, 2001). The CO2 flow rate 
profiles are shown in Figure 1d. 

 
 
Figure 1 – a) Temperature, b)  pH, c) Turbidity and d) CO2 flow rate at 30, 32, 34, 36 and 38 ºC and all 
recycles 

4. ANN Model Development 
This section presents the considerations required to develop a modelling technique based on ANN. 
This structure has nonlinear processing capabilities and universal approximation property and has already 
been used successfully to describe the dynamic behavior of biotechnological process, (Rivera et al., 
2010).  

(a) (b) 

(c) (d) 
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4.1 ANN structure selection. 
In this work, it was developed a model based on ANN to predict the concentration of ethanol, substrate 
and cell from secondary measurements (pH, turbidity, CO2 and temperature) in a second generation 
ethanol production. 
An ANN network with three layers was used: the input layer regards the data that are inserted (secondary 
measurements), the second is the hidden layer and it can comprise different numbers of neurons leading 
to different prediction performances, and the third, is the output layer. Log-Sigmoid and Linear Transfer 
Function are used to the hidden layer, and output layer, respectively. The relationship that represents an 
ANN is given mathematically as, equation (1): 
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where N, M and K are input, hidden and output layer, respectively. The wji is the weight of the connection 
of the ith neuron in the input layer and the jth neuron in the hidden layer; θj is the jth neuron bias in the 
hidden layer; Wkj is the weight of the connection between the jth neuron to the kth neuron in the output 
layer; bk is the kth neuron bias in the output layer; the neurons activation are F() and f() functions in the 
hidden layer and output layer, respectively. Neural network toolbox under Matlab® software was used for 
training the models.  
There were performed three ANN models each for every output with 12750 lines of data. The input 
variables are pH, turbidity, CO2 flow rate and temperature and the outputs are concentration of ethanol, 
substrate and cell. The samples were randomly divided in 70% for the training set, 20 % for the validation 
set and 10 % for the testing set. A quantitative examination of the fit of the predictive models was made by 
using error measurement indices which are commonly used to evaluate forecasting models (Rivera et al., 
2010), (Herrera and Maciel Filho, 2013). The accuracy of the models was determined by the quality of 
prediction and it is evaluated in terms of R2, Mean Square Error (MSE), Eq.1, and Residual Standard 
Deviation (RSD), Eq. 2. 
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where Y is the predicted value, y is the experimental value and n is the number of observations. 

5. Result and discussion 
ANN model performance was compared with experimental data. The main objective was the prediction of 
the concentration of ethanol, substrate and cells from secondary measurements (pH, turbidity, CO2 and 
temperature). These ANN models have been improved by selecting the network architecture considering 
the number of neurons in the hidden layer; this has been evaluated with R2, MSE and RDS. In the Table 
1, based on these criteria it can see the best performance for the ANN prediction. 
It can be seen from Figure 2, that the performance of the ANN models for the testing set showed a very 
good prediction when compared with the actual value for the three variables: concentration of ethanol, 
substrate and cell. 
Besides, results from Table 1, suggest that ANN models provide an efficient resource of recognize 
parameters, as well as prediction of concentration of ethanol, substrate and cell. It can be said that this 
work developed a simple, accurate and time saving models for the estimation of critical variables second 
generation ethanol production. 
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Table 1. Performance of ANN models for prediction of concentration of ethanol, substrate and cell  

ANN Output Ethanol Substrate Cell  

R2 0.997 0.995 0.997 
MSE 27.182 17.340 0.066 
RSD 2.380 6.312 3.403 

Time (min:sec) 2:24 21:34 09:15 
Epochs 251 1000 257 

Hidden Neurons 100 100 60 

 
 

 
Figure 2. ANN model prediction (solid symbols) and actual values (lines) for a) Ethanol  b) Substrate and 
c) Cell concentrations at 30, 32, 34, 36 and 38 ºC and all recycles 

6. Concluding Remarks 
A methodology using ANN and online data from second generation ethanol production was presented in 
this work. From the results, it can be said that ANN can yield efficient performance for prediction of 
concentration of ethanol, substrate and cell. 
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An appropriate choice of the architecture of the ANN model and an appropriate use of secondary 
measurements result in a reliable predictive model that satisfactorily describes the dynamic behavior of the 
process even in the presence of operational and kinetics changes of the process. 
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