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access to cell wall carbohydrates, though without degradation of sugars and consequent formation of 
fermentation inhibitors compounds (Harrison et al. 2013). 
Currently, the most studied pretreatments are the physical and chemical (or both). Physical pretreatments 
include different mills (particle size reduction) and irradiation. Chemicals pretreatments include acid, 
alkaline, solvent, supercritical fluid and oxidative pretreatments (Khullar et al. 2013). Physico-chemical 
pretreatments include steam explosion, ammonia fiber expansion (AFEX) and hot water (Mood et al. 
2013). 
Diluted acid is one of the more mature pretreatment methods (Chheda et al. 2007). When associated with 
moderate temperatures, it is effective in solubilization of hemicelluloses and recovery of sugars in the 
hydrolysate. Part of the cellulose may be converted into oligomers and monomers during the pretreatment, 
which may be advantageous as they are easily fermented by yeasts (Manzoor et al. 2012). 
Particle size reduction is the first step to biomass conversion (Khullar et al., 2013). The increase of 
substrate surface area by size reduction facilitates the heat and mass transfer and enzyme accessibility, 
which could improve the efficiency of pretreatment and enzymatic hydrolysis (ZHU et al. 2009). 
Vidal el al. (2011) reports that physical pretreatments alone resulted in efficiencies <50 % compared to 
chemical pretreatments that lead to >70 % conversion efficiencies. In addition, they show the influence of 
particle size depends on the pretreatment that will be used in the process. Therefore, optimizing biomass 
particle size is crucial to achieving high sugar conversion and low production cost (Zhu et al. 2009). 
The objective of this study was to evaluate the effect of bagasse particle sizes in the dilute acid 
pretreatment and enzymatic hydrolysis. The effects of particle sizes on mass solubilization in different 
conditions of pretreatment and enzymatic hydrolysis were investigated. 

2. Materials and methods 
2.1 Raw material 
Sugarcane bagasse, from a single harvest, donated by a sugar mill (Usina Tarumã do Grupo Raízen, 
Tarumã, São Paulo, Brazil), was used. The material was dried at room temperature and stored in plastic 
bags. A portion of bagasse was milled in different particle sizes (0.5, 1.0 and 2.0 mm) obtained by a knife 
mill equipped with a sieve (Fritsch - Pulverisette 19). 

2.2 Pretreatment 
Pretreatment was performed in laboratory scale stainless steel cylindrical reactors with a total volume of 
500 mL. Bagasse samples (30 g of DM) were pretreated with 1 % (w/v) sulfuric acid at fixed solid-to-liquid 
ratio (1:5). The assays were performed at 120 °C for 20, 40, 60 min and 140 °C for 10, 20, 30 min. A 
glycerin bath was used to maintain the temperature. Initial time (t=0) was fixed as the time the desired 
temperature inside the reactor was reached. After the target pretreatment time was attained, the reactor 
was taken out from the glycerin bath and submerged into a water bath to cooling. 
The wet pretreated material was squeezed to separate the liquid and solid fractions. The solid fraction was 
exhaustively washed with water and weighed subsequently. A portion of pretreated bagasse was used to 
chemical composition analysis and the rest of material was used to enzymatic hydrolysis. 

2.3 Analysis of chemical composition 
Untreated and pretreated bagasse were analyzed regarding chemical composition. Extractives content 
was analized according to Sluiter et al. (2005a) and ash content was analyzed according to Sluiter et al. 
(2005b). Structural carbohydrates and lignin were analyzed according to Sluiter et al. (2008) and adapted 
by Gouveia et al. (2009). 
Sugars, acetic acid, HMF and furfural were analyzed by HPLC (Agilent Technologies). Cellobiose, 
glucose, xylose, arabinose and acetic acid were separated on an Aminex HPX-87H column (Bio-Rad 
Laboratories Inc., Hercules, CA, USA) at 35 °C and 0.05 mM H2SO4 as eluent at a flow rate of 0.6 mL/min 
using a refractive index (RI) detector. HMF and furfural were separated on Nova-Pak C18 column (Waters 
Co., Milford, MA) at 30 °C and a solution composed of a 1 % acetic acid-containing 1:8 acetonitrile-water 
at flow rate of 0.8 mL/min was used as eluent. 

2.4 Enzymatic hydrolysis 
Enzymatic hydrolysis of the pretreated bagasse was performed in erlenmeyers with a substrate content of 
10 % (DM) and sodium citrate buffer 0.05 mol/L at pH 4.8. The erlenmeyers were incubated in an orbital 
shaker MA-832 (Marconi, Piracicaba, SP, Brazil) agitated at 150 rpm at 50 °C for 72 h. 
Cellulase (Celluclast 1.5 L (80 FPU/g)) and β-glucosidase (Novozym 188 (616 CBU/g)) were used. The 
enzyme loadings used were 15 FPU/g bagasse of cellulose and 25 CBU/g bagasse of β-glucosidase. 
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The hydrolyzed sugars were determined by HPLC on an Aminex HPX-87H column (Bio-Rad Laboratories 
Inc., Hercules, CA, USA) at 35 °C and 0.05 mM H2SO4 as eluent at a flow rate of 0.6 mL/min using a 
refractive index (RI) detector. 

3. Results and discussion 
3.1 Chemical composition of untreated bagasse 
The chemical compositions of untreated bagasse in different particle sizes are presented in Table 1. 

Table 1: Chemical compositions of untreated bagasse in different particle sizes 

Sample Cellulose (%) Hemicellulose (%) Lignin (%) Ash (%) Extractives (%)   
Unmilled 40.35 ± 0.21 28.12 ± 0.00 25.79 ± 0.26 2.35 ± 0.18 2.98 ± 0.11   
<0,5 mm 38.12 ± 0.11 26.93 ± 0.26 26.70 ± 0.15 4.10 ± 0.22 4.12 ± 0.04   
<1,0 mm 40.02 ± 0.11 27.76 ± 0.07 25.66 ± 0.35 2.37 ± 0.12 3.67 ± 0.01   
<2,0 mm 39.63 ± 0.08 27.90 ± 0.09 26.44 ± 0.19 2.54 ± 0.48 3.30 ± 0.01   

 
From Table 1 it can be seen that bagasse with smaller particles (<0.5 mm) presents a slightly lower 
cellulose percentage. 

3.2 Effect of particle size on pretreatment 
Pretreatment assays in different conditions of time and temperature are presented in Table 2. 

Table 2: Pretreatment assays 

Assay Temperature (°C) Time (min) 
1 120 0 
2 120 20 
3 120 40 
4 120 60 
5 140 0 
6 140 10 
7 140 20 
8 140 30 

 
Time zero was defined as the time necessary for the inside of the reactor to reach the desired 
temperature. 
Figure 1 shows the solubilized mass (% DM) in the different samples during the pretreatment. 
 

 

Figure 1: Solubilized mass (% DM) of bagasse samples with different particle sizes. 
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It can be noted from Figure 1 that the solubilized mass was in the range from 17 to 39 %. It is observed in 
all assays that bagasse with smaller particles (<0.5 mm) presents a slightly higher solubilization compared 
to the other particle sizes. Tukey HSD test was performed to evaluate if the difference between the 
samples was statistically significant. The software used was STATISTICA 7.0 and the results at 95 % of 
confidence showed that the difference among solubilized mass (%) for the samples with different particle 
sizes submitted to the same pretreatment conditions was not significant. 
Chung et al. (2012) reports that mass loss in dilute acid pretreatment is due the hemicellulose 
solubilization present in the biomass. Figure 2 shows the hemicellulose solubilization (% DM) in the 
pretreatment. 
 

 

Figure 2: Solubilized hemicellulose (% DM) in the pretreatment. 

 
Figure 2 shows that the range of solubilized hemicellulose was from 30 to 87 %. The higher solubilization 
(87 % of hemicellulose) occurred in the more severe condition, 140 °C for 30 min. As expected, the lower 
solubilization occurred in the less severe assay (120 °C, 0 min), and varied from 30 to 33 % between 
different samples. 
It can also be noticed from Figure 2 that the assays at 120 °C, 60 min had hemicellulose solubilizations 
similar to the assays at 140 °C, 10 min (72-74 %). Thus, the pretreatment was influenced by temperature, 
since the reaction at 140 °C solubilized more quickly the same amount of hemicellulose when compared to 
the assay performed at 120 °C. 
Regarding particle size it was observed that the different sizes did not influence solubilization, since the 
amount of solubilized hemicellulose in the samples with different particle sizes submitted to the same 
pretreatment conditions was statistically equal (p=0.05). 
Kim and Lee (2002) proposed a model to evaluate the intraparticle diffusion of sulfuric acid in different 
feedstocks and the effect on dilute sulfuric acid pretreatment. Vidal et al. (2011) used this model to 
calculate the theoretical critical particle size (the size above which diffusion becomes important in the 
pretreatment process) for different feedstocks (corn stover, bagasse, hardwood, wheat straw) pretreated 
with dilute sulfuric acid (0.5 % w/w) at 180 °C. The values were in the range of 1.0 to 3.0 mm (sieve 
opening) suggesting that smaller particle sizes do not increase the pretreatment efficiency. The results of 
the present work, indicates that for the pretreatment conditions considered, even unmilled bagasse leads 
to similar pretreatment performance. 

3.3 Effect of particle size on enzymatic hydrolysis 
Figure 3 shows the hydrolyzed mass of untreated and pretreated samples. It can be noted clearly the 
difference of solubilization in the untreated samples (13-18 %) compared to pretreated samples (33-60 %), 
evidencing the increase of enzymatic hydrolysis efficiency after pretreatment. The higher mass loss (58-60 
%) occurred in the samples pretreated at 140 °C for 30 min (assay 8), in which the higher hemicellulose 
solubilization in pretreatment was also observed (Figure 2). 
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Regarding particle size, a solubilization about 5 % higher occurred for the milled samples compared to 
unmilled bagasse; however, a Tukey HSD test showed no significant difference among samples (p=0.05), 
indicating no influence of particle size on enzymatic hydrolysis, the same behavior observed in 
pretreatment. 
Hsu et al. (1996) observed an increase in the digestibility of switchgrass from 60 to 80 % when the particle 
size decreased from 10 to 3.0 mm. However, no difference was observed when pretreated materials of 
different particle sizes were homogenized and subjected to enzymatic hydrolysis, indicating that particle 
size has no influence on the performance of pretreatment. Khullar et al. (2013) did not observe difference 
in the glucose release rate of enzymatic hydrolysis of Miscanthus with particles of 0.08 and 2 mm (sieve 
opening) pretreated with diluted acid. 
 

 

Figure 3: Hydrolyzed mass (% DM) of pretreated samples. 

The chemical composition and the hydrolyzed mass of the samples pretreated at 140 °C for 30 min (assay 
8) are shown in Table 3. 

Table 3: Chemical composition and hydrolyzed mass of pretreated bagasse samples at 140 °C for 30 min 

Sample Cellulose (%) Hemicellulose (%) Lignin (%) Ash (%)   Hydrolyzed mass (%)   
Unmilled 54.84 ± 0.22 6.16 ± 0.05 33.71 ± 0.42 5.36 ± 0.08         58.55 ± 0.10   
<0,5 mm 55.60 ± 0.57 6.09 ± 0.01 34.38 ± 0.42 4.83 ± 0.13         57.89 ± 0.31   
<1,0 mm 55.20 ± 0.16 5.94 ± 0.02 33.50 ± 1.01 4,19 ± 0.05         57.88 ± 0.61   
<2,0 mm 56.04 ± 0.27 6.15 ± 0.11 33.65 ± 0.35 3.64 ± 0.01         60.06 ± 0.20   

 
Considering the percentages of the sugars in the pretreated materials and the percentage of hydrolyzed 
mass it seems that high hydrolysis conversions were attained (>90 %), since the percentage of hydrolyzed 
mass is higher than the percentage of cellulose in the pretreated materials. The commercial enzyme 
Celluclast contains high activity of acetil xilan esterases (Juhász et al. 2005), thus hemicelluloses are also 
hydrolyzed. 

4. Conclusions 
No difference was observed among samples with different particle sizes in the pre-treatment and 
enzymatic hydrolysis, indicating that the range of particle sizes studied did not influence these steps. The 
pre-treatment at 140 °C removed most of the hemicelluloses in reaction times shorter than the 
pretreatment at 120 °C. The higher percentage of solubilized mass in the pretreatment (38-39 %) and 
enzymatic hydrolysis (58-60 %) occurred at 140 °C, 30 min. 
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