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represent a great potential resource for energy achievement (Olivarez et al., 2012). The Brazil is the 
world's largest producer of sugarcane, with approximately 570 million tons in the 2011/2012 season. 
Forster-Carneiro et al. (2013) studied agricultural species cultivated in Brazil, and showed that the culture 
with the highest biomass production was sugarcane with 714.0 106tons in 2009/2010 and estimated 
production of 893.0 106tons for the year 2019/2020. Therefore, in Brazil it represents the culture with 
greater production of biomass residues, 157.0 106tons of agriculture residues of sugarcane (2009/2010) 
and growth of 25.2% by 2019/2010 with a production of 196.5 106tons of total waste, only sugarcane. The 
lignocellulosic biomass is a particularly attractive feedstock because it is the cheapest, most abundant, 
and fastest growing form of terrestrial biomass. In Brazil, among the raw materials, agricultural residues 
are attractive supply sources, since the current technology is already capable of processing them into 
fermentable sugars (Prado et al., 2013). Therefore, the hydrolysis process should be optimized so that the 
yield of fermentable sugars is maximized, while formation of degradation products is minimized. 
Unfortunately, this is a difficult task since sugars degradation rate can be higher than the hydrolysis rate of 
the lignocellulosic material to fermentable sugars (Sasaki et al., 2003). Therefore, the main challenge is to 
achieve high fermentable sugars yields and low concentrations of the compounds that are inhibitory to the 
fermentation microorganisms in order to allow an efficient fermentation process for second-generation 
bioethanol production (Schacht et al, 2008).  
The sub/supercritical water hydrolysis (SHW) is a clean and fast hydrolysis method applicable to 
lignocellulosic biomass with the advantages of no need of pre-treatment, short reaction time, low 
corrosivity, low residue generation and no use of toxic solvents (Resende et al., 2007). The technology of 
supercritical water is environmentally friendly processes because it only uses water under high pressure 
and temperature. The simple sugars that can be obtained from the cellulosic and hemicellulosic fractions 
lignocellulosic materials can be used as substrate to produce second-generation bioethanol or other 
precursors of bio-products (Petchpradab et al., 2009). There are relatively few examples of applications of 
SWH for the hydrolysis of agricultural and food industry residues. Most relevant examples include corn 
stalks and stover, sugarcane bagasse and rice bran. The sugarcane bagasse is an agricultural residue 
produced in large amounts in Brazil with a great potential to be used for the recovery of value added sub-
products (Prado et al., 2014). Besides these important residues there are other potential raw materials that 
can be used to produce simple sugars using SWH, including and coconut husk. Coconut husk is a 
lignocellulosic material produced from processing of coconuts for beverages and coconut powder, 
categorized as hard wood and characterized by high toughness due to its high lignin content (Prado et al., 
2014). Processing residues represents an opportunity to make better use of cheap and abundant wastes 
to produce high value sub-products. However, considering the complexity of polymers interaction and the 
diversity of their composition, each raw material represents a technological challenge that should be 
studied separately. Additionally, the process is far from being optimized. The objective of this work was to 
optimize process conditions for subcritical water hydrolysis of sugarcane bagasse and coconut husk by 
SWH, using carbon dioxide as an acid catalyst. 
 

2. Material and Methods 
2.1  Raw materials origin 

The sugarcane bagasse was provided by the Brazilian Bioethanol Science and Technology Laboratory 
(CTBE, Campinas, Brazil). The coconut husk resulting from coconut processing to produce coconut water 
and milk was donated by Ducoco Alimentos (Linhares, Brazil). The raw materials were stored at -18 °C 
and then they were comminute in a knife mill (Marconi, model MA 340, Piracicaba, Brazil) equipped with a 
1 mm sieve before they were used as samples in the experiments. Distilled water was used in all 
experiments. 

2.2 Hydrolysis equipment 
The semi-batch unit shown in Figure 1 was built to hydrolyze lignocellulosic biomasses using 
sub/supercritical water technology. The equipment can operate up to 400 ºC. The system is composed by 
a liquid high pressure pump that works up to 400 bar (LabAlliance, model Series III, State College, PA) for 
water pumping, an air driven liquid pump (Maximator GmbH, model M18, Thüringen, Germany) for carbon 
dioxide pumping, a thermostatic bath (Marconi, model MA-184, Piracicaba, Brazil) operated at -10 °C to 
assure that CO2 is liquid before entering the pump, two static mixers (Autic, Campinas, Brazil), one 
stainless steel heating coil (Autic, 6 m × 1/8” i.d., Campinas, Brazil) for the reaction medium heating, one 
stainless steel 50 mL reactor (Autic, 2.34 cm i.d. × 11.7 cm, Campinas, Brazil) with metal-to-metal fit to 
allow using temperatures up to 400 °C, one micrometric needle valve (Autoclave Engineers, Erie, PA) for 
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pressure control, one stainless steel refrigeration coil coupled to a thermostatic bath (Marconi, model MA-
184, Piracicaba, SP, Brazil) operating at 40 °C to assure that the reaction is quickly quenched after the 
hydrolysate exits the reactor, and one glass gas-liquid separator to separate the liquid hydrolysate from 
the gas (dioxide carbon). The equipment also contains block valves, thermocouples and manometers. 

 

 

Figure 1:Sub/supercritical water hydrolysis unit equipment with addition of CO2 

2.3 Hydrolysis of raw materials  
Experiments were carried out using 10 g of raw material, approximately. The sample was inserted in the 
reactor, which was connected to the equipment. Distilled water was pumped to the system until reaching 
the specified pressure (20 MPa). After the pressurization the pump the process was stopped, the 
micrometric valve was closed and the heating of the coil and of the reactor was started. The temperature 
of process was 250 °C, while the reactor was pre-heated to 120 °C to assure that there was no hydrolysis 
of cellulose during the pre-heating time. After temperature stabilized, the dynamic period of the process 
was started, the pumping water was set at 33 mL/min (ambient conditions) and the pumping of CO2 was 
set at 7 g/min through the system for 30 min. At the same time, the reactor temperature was set to 250 °C, 
causing a temperature profile until its stabilization. The samples of hidrolysates were collected each 2 min. 
The experiments were performed in duplicate. 

2.4 Analysis of the hydrolysate 
The total reducing sugars, that is, sugars with open-chain form with an aldehyde group or a free 
hemiacetal group, were determined by the colorimetric Somogyi-Nelson method (Nelson, 1944). The 
hydrolysate was subjected to acid hydrolysis to assure that all the oligomers would be broken to 
monomers, and in this way could be detected as reducing sugars (Miller, 1954). After the coloring reaction 
(Nelson, 1954) the absorbance was recorded at 730 nm by a spectrophotometer (Femto, model 800 XI, 
São Paulo, Brazil). The concentration of total reducing sugars was calculated using an external calibration 
curve of glucose (10-600 mg/L), and expressed as glucose equivalents. The pH of the hydrolysates was 
determined using a digital pHmeter (Digimed, model DM-22, Santo Amaro, Brazil).  
Degradation products of sugars and of the lignin that are inhibitors to fermentation microorganisms were 
determined by HPLC. The analyses were carried out using a Waters system (Waters Corp., Milford, 
Massachusetts), consisting of separation module (2695A) with integrated column heater and auto-sampler, 
and a photodiode array detector (2998).  Some of the samples of the hydrolysates were diluted in 
deionized water and filtered through a 0.45 μm nylon membrane. Separation of compounds present in the 
samples was carried out using a fused-core type column (XSelect HSS, C18, 2.5 µm, 100 Å, 100 × 4.6 
mm, Waters Corp.) (Rostagno et al., 2011; Farías-Campomanes et al., 2013). The temperature of the 
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column was maintained at 40 °C and the mobile phase consisted of water containing 0.1 % of acetic acid 
(solvent A) and acetonitrile containing 0.1 % of acetic acid (solvent B). Separation was achieved using the 
following gradient: 0 min: 10% B; 2.0 min: 10% B; 5.0 min: 20% B; 6.0 min: 20% B; 10 min: 90% B; 12 min: 
90% B; 13 min: 10% B. Equilibration time between runs was 7 min; total time was 20 min per sample. The 
mobile phase flow rate was 0.8 mL/min and the injection volume was 10 µL. UV absorbance was 
monitored from 200 to 400 nm with a sampling rate of 10 points per second. The software for control of 
equipment and data acquisition was Empower 3. The identification of each compound was achieved by 
comparison of retention times and UV spectra of each compound. The standard curve (8 points) of each 
compound was prepared by plotting concentration (0.1-100 mg/L) against area. Regression equations and 
correlation coefficient (r2) were calculated using Microsoft Excel 2010 software and were higher than 0.99 
for all compounds. The standard calibration curve was built with pure standards of furfural,                        
4-hydroxybenzoic acid (4-HBA), 5-HMF, and vanillin (Sigma-Aldrich, Milwaukee, WI).   

3. Results and Discussion 
The results of the hydrolysis experiments with the addition of carbon dioxide as an acid catalyst were 
compared to data from experiments conducted with pure water as an acid catalyst. In the first experiment 
using the sugarcane bagasse the results showed that was not change in the content of reducing sugars in 
the hydrolysate (13.5%)  (Table 1), or is both in processes using water or carbon dioxide no representative 
difference between them. The pH of the hydrolysates remained approximately constant during the process 
between 3 and 4. These results, values of pH (3.0-4.0) are considered to be higher than values of pH 
presented by Kumar and Gupta (2008) with values of the pH 2.3-3.0, in subcritical water hydrolysis at 200-
405 °C of temperature with cellulose in a continuous system. The low pH indicates a high concentration of 
organic acids, derivative from monomers degradation. Total fermentation inhibitors in the hydrolysate 
increased, from 60.5 mg/g to 115.7 mg/g. Furfural + 5-HMF, which are also products of sugars 
degradation, increased 99% with CO2 addition, while the phenolic compounds, which are products of lignin 
degradation, decreased 75% with CO2 addition. Therefore, the addition of dioxide of carbon in the 
subcritical water hydrolysis process was not effective for sugarcane bagasse; on the one hand the this 
technology improved the depolymerisation of the lignocellulosic complex, leading to a constant yield of 
sugars  
 
Table 1:  Experimental results obtained for subcritical water hydrolysis of sugar cane bagasse with and 
without CO2  

 Without CO2 With CO2 

Total reducing sugars 13.5 % 13.5 % 
pH 5.43 – 4.41 5.34 – 4.60 
Furfural + HMF 57.7 mg/g 115.0 mg/g 
Phenolic compounds 2.8 mg/g 0.7 mg/g 

 

In the experiments of coconut husk samples the results were completely different (Table 2). The subcritical 
water hydrolysis with CO2 addition increased the yield of total reducing sugars by 15%. The values of the 
pH were lower when dioxide of carbon was added, implying more formation of organic acids that come 
from sugars degradation. On the other hand, furfural + 5-HMF yield did not change with CO2 addition, 
while phenolic compounds yield has increased 36%, indicating improved cellulose depolymerization. As 
total sugars recovered increased, for coconut husk the addition of CO2 improved the process.  

Table 2:  Experimental results obtained for SWH of coconut husk with and without CO2  

 Without CO2 With CO2 

Total reducing sugars 11.7 % 13.5 % 
pH 5.6 – 3.63 5.34 – 4.29 
Furfural + HMF 252.1 mg/g 250.6 mg/g 
Phenolic compounds 8.6 mg/g 11.7 mg/g 

 
The coconut meal, a residue from coconut milk production, was study also of the Khuwijitjaru and 
colaborates (2012) in the subcritical water hidrolise process (100-250 °C) using a batch system. The 
results of pH were similar to those studied in this work, the pH profile showed a rapid decrease with 
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increased of temperature and in a short period of time. The results of the concentration of the sugar in the 
samples are similar in both works because, at 100-150 °C of temperature, the glucose was the main sugar 
of the hydrolysate and another condition at 175-200 °C of the temperature the mannose became the major 
sugar component. Finally the authors concluded that the residues from coconut processing industries are 
interesting raw materials for the production of fermentable sugars. Also, Cardenas and collaborates (2014) 
studied the subcritical water hydrolysis with defatted pressed palm fiber and the results indicated that also 
this raw materials is indicated for the production of fermentable sugars, the biomass conversion (40 - 97%) 
increased with temperature indicating the formation of by-products and there is the highest selectivity for 
saccharide formation was at 423 K (20 - 59 mol glucose/mol furfural equivalent). 
In this work, the results indicated large differences between the raw materials. The different behaviour is 
probably associated with the different composition of the materials. The coconut husk presented higher 
lignin content than of the sugarcane bagasse. Lignin protects the lignocellulosic complex from degradation; 
therefore, less aggressive conditions (using water alone) are sufficient to depolymerize it when the lignin 
content is low. On the other hand, as lignin content increases, it is necessary to use more aggressive 
conditions (higher temperature or a catalyst) to achieve the same depolymerisation degree. Therefore, the 
addition of dioxide carbon can improve the SWH process, depending on the raw material used. 

4. Conclusion 

In sugarcane bagasse experiments with the subcritical water hydrolisis with dioxide carbon or without 
dioxide carbon, the results showed no change in the content of reducing sugars in the hydrolysate 
(11.5%). In conclude, for sugarcane bagasse the use of dioxide carbon as acid catalizate is not necessary. 
However, the total fermentation inhibitors increased, indicating improved depolymerisation of the 
lignocellulosic complex associated with more sugars degradation. In the experiment of the coconut husk 
the content of total reducing sugars increased 15%, this results were higher than compared with SWH of 
sugarcane bagasse. The pH values decreased, and the fermentation inhibitors increased, indicating a 
more pronounced effect of dioxide carbon addition on the lignocellulosic complex depolymerization than on 
the sugars degradation. The results indicated large differences between raw materials. The addition of 
carbon dioxide as an acid catalyst in the SWH of sugarcane bagasse is not economically viable, but for the 
sub/supercritical water hydrolysis of coconut husk is an attractive process. Therefore, sub/supercritical 
water hydrolysis should be optimized individually for each raw material 
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