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groups, can lead them to have the high amount of stiffness, mechanical properties, and composite 
reinforcement (Siqueira et al., 2010). More recently, potential biofuel production from marine organisms 
has been also investigated. Bioethanol (derived from cellulosic or lignocellulose) and Biodiesel (a mixture 
of alkyl esters of long chain fatty acids derived from vegetable oils or animal fats), were the first biofuels 
and have certainly been valuable in developing the biofuel market. However, their production from starch, 
sugars, and vegetable oils induces competition with food production and can thus hardly deliver the large 
volume required for worldwide transportation (Palkovits, 2010). To avoid this problem, it is the main 
interest to produce biofuel from marine creatures. 
In this work, the principle objection was evaluation of one dominant species in Norwegian coast called 
Ciona intestinalis which belongs to the family of Ascidiacea (ascidians), to see its capability for conversion 
to different bio-products. For that purpose, some processing treatments have been conducted with the 
aims to fractionate tunicate biomass components or enhance the cellulose accessibility and reactivity for 
its further possible application. Moreover, analysis of amino acid composition and oil structure of the 
samples has been performed for nutritional purpose and biodiesel production.  

2.  Materials and methods 
2.1 Sample preparation 
The tunicate sample subjected to this study was Ciona intestinalis, which has been collected from 
Norwegian coast as the dominant ascidian sample, and acclimatized to the lab situation. The outer layer of 
tunicate sample (Tunic) was separated manually from the internal organs followed by rinsing with fresh 
water. The samples were put inside freeze dryer (Scanvac Cool Safe freeze dryer model CC300-8V) for 
two days to let them completely dried. The dried ascidian tunicate was reduced to powder by using a knife 
mill. The size of ascidian sample powder used was less than 40 meshes, and the whole organ (Tunicate), 
internal layer, and external layer (Tunic) have been used in different experiments. 

2.2 Cellulose preparation 
Cellulose preparation has been done via three-step sequence, meaning acid, alkali, and NaOCl application 
respectively.5 g ascidian tunicate dried sample was dipped in the acidic aqueous solution of H2SO4 (0.9 wt 
%) in a stainless steel vessel, following by stirring, and heating to 180°C, and then treating for 2 h under 
gentle stirring. The ascidian tunic was then filtered by using a glass filter, washed with acetone/water, and 
dried under vacuum at 75°C. For the next step, the acid treated sample was treated with alkali aqueous 
solution of NaOH/Na2S (9/3 wt %) for 2 h at 180°C, and then also filtered, washed, and dried in the same 
process. The alkali-treated sample was treated with aqueous NaOCl solution (2.9 wt %) as a bleaching 
agent for 1 h at 75°C, followed by filtering, washing, and drying. The final yield has been measured, and 
carbohydrate analysis has been done for measuring cellulose content according to tappi standard TAPPI T 
249 cm-09. 

2.3 Nitrogen content analysis  
The protein content of the samples treated by three-step sequence was deducted from the nitrogen 
concentration obtained by pyro-chemiluminiscent analysis on an ANTEK 7000NS analyzer (Antek 
Instrument, USA). The instrument was calibrated with urea and the nitrogen concentration was multiplied 
by the common conversion factor of 6.25 (equivalent to 0.16 g nitrogen per gram of protein) used for 
estimation of the protein content in samples (Gunnarsson and Tunlid, 1986). 

2.4 Amino acid content analysis  
Chinese national standard GB/T 5009.124-2003 was followed.10-20mg of the smashed dried tunicate 
samples from the whole body, internal, and external part (Tunic) of C. intestinalis were separately weighed 
and added 10mL 6 mol/L HCl and 3 drops of phenol. After freezing the resulting suspension for 3-5 
minutes and replacing all of the air with nitrogen, the suspension was heated at 110 degree for 22 hours, 
followed by filtration and analyzed by amino acid analyzer (Hitachi L-8800 high speed amino acid 
analyzer) using external amino acid standards.  

2.5 Oil Extraction 
The samples were put inside freeze dryer for two days to let them completely dried. After that, it has been 
crushed into smaller pieces, transferred into the extractor chamber. Then, the extraction solvent 
(petroleum ether: p.e) has been added (6 hours; 30-60 °C) into the flask which was fitted into an electric 
heater. Then, filtration for separation of solution from solid tunicate materials was required. Once it has 
been done, the remaining p.e solvent was evaporated under vacuum using rotary evaporator. 
Furthermore, chemical structures and fatty acid compositions of the obtained oil have been characterized 
by NMR (recorded on a Bruker Avance 400 MHz instrument using the 1H-NMR standard Bruker pulse 
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programs), FTIR (recorded on a Perkin-Elmer 2000 spectrometer), and GC-MS (Thermoquest CE 
instrument Trace GC 2000 series equipped with Finnigan Trace MS recording at 70 eV while using DB-
5MS column). 
 

3.  Results and discussion 
Cellulose yield and purity of the sample after three step treatment were shown in Table 1. Pure cellulose 
was obtained (Figure1) at a yield of 3.6 wt % based on weight of the starting material, while no ash has 
been seen in the produced pure cellulose. The yield from each step based on weight of dried starting 
material after each treatment was 21, 33(data hasn’t been shown), and 54 wt % after first (H2So4), second 
(NaOH) and last treatment (oxidation/bleaching: NaClO) respectively, and cellulose content via 
carbohydrate analyses showed cellulose in an amount of greater than 95 wt %. 

Table 1: Yield (based on weight of dried sample after alkali treatment), ash content, cellulose percent, 
other C5, C6 percent, and cellulose yield after three step (Acid- alkali- NaClO) treatment. 

  Pretreatment Ash content 
(%) 

Cellulose  
(%) 

Other C5, C6 
Sugars (%) 

Yield (%) Cellulose yield 
(%) 

H2SO4-NaOH 
-NaClO 

~0 96 0 54 
 

3.6 

Protein content of treated sample was analyzed by ANTEK-analyzer and the result was shown in Table 
2.According to that, after Acid-, Alkali-, and Hypochlorite treatments, there has been a step by step 
decreasing to reach near zero percent of protein by NaClO. The alkali treatment (NaOH) here seems to be 
the most effective for protein removal. 

Table 2: Changes of protein content during three step treatment (H2SO4-NaOH-NaClO) measured by 
ANTEK nitrogen analyzer 

              Treatments 
 

Three-step sequence 

H2SO4              NaOH NaClO 

              Protein (%) 23.90 2.70 0.60 

Figure 1(a) shows a macroscopic image of pure crystalline cellulose, while Figure 1(b) illustrated a SEM 
image of the pure cellulose prepared from the three step treatment conditions. The 96% pure cellulose 
obtained has a high capacity to be served as a potential source of pure cellulose whiskers for bio/nano 
composite materials, and for producing ethanol (Pirani and Hashaikeh, 2013). 

 

 

 

 

 
 
 
 
 
 
Figure 1(a) (Left): Macroscopic image of the pure cellulose after three step treatment. 1(b) (Right): SEM 
image of the pure cellulose after treatment. 

The protein content and amino acids in the tunicate sample was determined and compared with egg 
albumin (Table 3). There were 17 amino acids, 9 essential amino acids (EAA) and 8 non-essential amino 
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acids (NEAA). The highest and lowest amount of total amino acids was related to inner organ, and outer 
layer (tunic) with 51.09%, and 25.49% respectively. The results showed that tunicate samples contain all 
types of amino acids found in egg albumin (Lewis et al., 1950). Most of the ratio of tunicate amino acids to 
egg albumin was around 1 or higher. The high quality of protein sample especially in inner part of the body 
can be used as an animal (like fish) feed.  
 

Table 3: Amino acid composition of inner organ, tunic (external layer of tunicate), and tunicate (Whole 
body) sample, in g/100g dry weight has been measured. Amino acids specified with * are EAA, and the 
rest are NEAA. Tunicate# is based on g/1oog protein calculated from Tunicate (whole body) amino acids. 

 
 

FTIR spectra of tunicate oil fraction were presented in Figure 2. It can be seen that unlike other oils which 
contain mainly glycerol ester structures (FTIR peak at 1745 cm-1), the tunicate lipids contain mainly free 
fatty acids, close to phospholipid (1709cm-1 ).This is supported by 1H-NMR (Figure3)where the glycerol 
content is less than 10% of the total fatty acid contents. 

 

          

            Figure2. The FTIR spectrum of tunicate oil and other feedstocs 

1H-NMR spectroscopy gives information about classes of unsaturated and saturated fatty acids. Based on 
the integral values  from the 1H-NMR spectra( Figure 3) the composition of tunicate oils was estimated on 
two classes: unsaturated and saturated. There were a lot of free fatty acids floating around inside tunicate 
oil. Glycerol part of the oil shows in around 4.2 ppm which is very low as it has been proved by FTIR. The 

Amino 
Acid 

Inner 
Organ 

Tunic Tunicate 
(g/100g dry weight) 

     Tunicate#

(g/100g protein) 
  Egg albumin 
(g/100g protein) 

        Ratio 
(Tunicate#/Egg) 

Thr* 2.66 1.83 2.17 5.13 4.00 1.30 
Val* 2.08 1.35 1.70 4.01 8.80 0.50 
Met* 1.09 0.38 0.54 2.10 5.40 0.40 
Ile* 1.72 0.95 1.28 3.32 7.10 0.50 
Leu* 3.79 1.75 2.54 7.31 9.90 0.70 
Phe* 1.73 0.81 1.13 3.34 7.50 0.40 
Lys* 3.41 0.90 1.84 6.58 6.40 1.00 
His* 1.17 0.67 0.90 2.26 2.41 0.90 
Arg* 3.63 1.24 2.13 7.00 5.90 1.20 
Asp 5.76 3.22 4.18 11.11 9.20 1.20 
Ser 3.00 1.69 2.18 5.79 8.50 0.70 
Glu 8.52 3.20 5.27 16.43 15.70 1.00 
Gly 3.81 1.52 2.31 7.35 3.20 2.30 
Ala 2.57 1.33 1.81 4.96 5.70 0.90 
Cys 1.70 1.93 1.93 3.28 0.00 0.00 
Tyr 1.98 1.36 1.56 3.82 3.75 1.00 
Pro 2.47 1.36 1.77 4.76 3.80 1.30 
Total(%) 51.09 25.49 35.24 98.53 107  
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4. Conclusions 

From tunicate sample harvested from Norwegian coast, the capability for preparation of crystalline pure 
cellulose which is capable for productions of cellulose whiskers has been shown. Three step treatment 
(H2SO4-NaOH-NaOCL) has proved to have a good combination of a significantly high cellulose percentage 
(96%) and a high protein removal percentage when aiming at cellulose extraction. Additionally, more 
concerns can be paid on protein and polysaccharide degradation during the biofuel production by a better 
possible route of combinations of chemical pretreatments. The oil components inside tunicate showed to 
be different from plant oils. The fatty acid composition looks more similar to fish oil and even with similar 
abundance of various types of fatty acids. Using GC-MS technique fourteen individual fatty acids present 
in tunicate oil samples were identified , while based on 1H-NMR spectroscopy the composition of fish oils 
was determined on two classes of fatty acids (unsaturated as total-of them ω-3 and DHA individually- and 
saturated). The ratio of most tunicate amino acids over the egg albumin is all around 1 or more, suggests a 
good potential to be exploited as feed for animals.  
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