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SCWG of glucose and cellulose (Freitas and Guirardello, 2012a) and in SCWG of microalgae biomass 
from C. vulgaris and Spirulina sp. (Freitas and Guirardello, 2013).  
In this work, optimization techniques are applied in the minimization of Gibbs energy and in the entropy 
maximization to study the thermodynamic effect of CH4 and CO2 use as co-reactant in the SCWG of 
microalgae biomass (Nannochloropsis sp.) and sugarcane bagasse. The Virial equation of state was used 
to represent the non-ideality of the system. Both problems were formulated as optimization problems (non-
linear programing) and the software GAMS in combination with the CONOPT solver, were used to solve 
them. 

2. Methodology 

2.1. Gibbs energy minimization – Isothermic systems 
The thermodynamic equilibrium condition for reactive multicomponent closed system, at constant pressure 
(P) and temperature (T), with given initial composition, can be obtained by minimization of Gibbs energy 
(G) of the system, given by: 

 (1) 

While satisfying the restrictions of non-negative number of moles of each component in each phase: 

 (2) 

In addition, the restriction of mole balances, given by atom balance for reactive systems: 

 (3) 

The Gibbs energy minimization was applied to evaluate the behaviour of SCWG systems as regards the 
composition of products for isothermic systems. Thus, the best operating conditions with respect to 
temperature, composition of biomass and co-reactants in the feed stream can be determined in order to 
obtain the highest syngas productivity. 

2.2. Entropy maximization – Adiabatic systems 
The thermodynamic equilibrium condition for reactive multicomponent closed systems, at constant P and 
enthalpy (H), with given initial composition, can be obtained by maximization of the entropy (S) of the 
system, with respect to : 

 (4) 

While satisfying the same previous restrictions, given by equations (2) and (3). Usually, physical properties 
are given as functions of composition, pressure and temperature, not enthalpy. Therefore, an additional 
restriction, referent to enthalpy balance, must be satisfied: 

 (5) 

The entropy maximization method was applied to study the thermal characteristics of the SCWG systems 
in adiabatic systems. The thermal effect of co-reactants addition was analysed too, in order to determine 
the better thermal conditions in the SCWG systems. 

2.3. Equation of state 
Since the system analyzed by the present work was at high pressure, the virial equations of state (EoS), 
truncated at second virial coefficient, were used to determine the fugacity coefficient of the systems. The 
second virial coefficient is calculated by the correlation of Pitzer and Curl (1957), which was modified by 
Tsonopoulos (1974). The following relation determined the fugacity coefficient: 
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The elevation of the initial temperature resulted in reductions on the H2/CO molar ratio observed in all 
conditions analyzed, molar ratio close to 2 was observed in systems with CO2 addition with 25 and 35 
wt%. Modification of the biomass source showed a significant effect on the H2/CO molar ratio observed in 
the product stream, the sugarcane bagasse had lower H2/CO molar ratios in all conditions analyzed. This 
behavior can be visualized comparing Figures 5 (a) and (b). 

The use of co-reactants proved to be an effective way to improve syngas production in the SCWG of 
different biomass sources. The use of CO2 was more suitable for the production of syngas mainly because 
the syngas produced presented H2/CO molar ratio very close to 2, which is the ideal molar ratio for further 
use in Fischer-Tropsch synthesis reactions. The addition of CH4 presented a significant increase in the H2 
production in the systems. This was the same behavior observed in the studies performed for isothermic 
systems. The addition of co-reactants did not modify significantly the thermal behavior of the studied 
systems under the conditions evaluated. 

4. Conclusion 
The Gibbs energy minimization and entropy maximization methods, applied in the software GAMS and 
solved with the solver CONOPT proved to be quick and effective in the resolution of the proposed 
problems, with computational time inferior to 1 s in all cases analyzed.  
The calculated final temperatures were close to the initial temperature of the reaction in both systems, thus 
indicating low energy requirements for maintain these reactions in all conditions analyzed. The addition of 
CH4 showed to be interesting for systems that aims H2 production and the addition of CO2 (with 25 and 35 
wt%) proved to be interesting to produce syngas with a H2/CO molar ratio close to 2, for further use in 
Fischer-Tropsch processes. The addition of co-reactants did not modify significantly the thermal behavior 
of the studied systems under the conditions evaluated. 
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