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This work sought to evaluate the explosion severity on hydrogen enrichment in methane-air mixture 
explosion. For this purpose, different hydrogen mixture compositions ranges between 4 to 8% v/v were 
considered. This work was performed using CFD tool FLACS that has been well validated for safety 
studies on both natural gas/methane and hydrogen system. FLACS is used to validate the maximum 
pressure and flame speed predicted by the CFD tool for combustion of premixed mixtures of methane and 
hydrogen against the experimental data. Experimental work was carried out in a closed pipe containing 90-
degree bends with a volume of 0.41 m3, operating at ambient conditions. From the experiment 
observation, it shown that the coupling effect of bending and thermal diffusivity gave the dramatic influent 
on explosion severity in hydrogen-methane/air at very lean concentration. However, simulation results 
showed that FLACs is under-predicting the overpressure at very lean concentration of hydrogen in 
methane/air mixtures. It can be said that lower hydrogen content in methane/air mixture limits the 
hydrogen diffusivity, leading to the decrease of the burning rate and flame speeds.  It is also demonstrated 
that the presence of 90-degree bend in closed pipe system increases the simulated flame speeds to the 
factor of 2-3, as compared to the experimental data. There are significant discrepancies between 
experimental and simulation, however, the results seem conservative in general. 

1. Introduction 

The acceleration of the flame inside a pipe is a complex phenomenon involving several variables spanning 
from fuel nature and mixture composition to geometrical characteristics of the pipe such as length, 
diameter, wall roughness or presence of obstacles in the flame path. During explosions, flame flow through 
the pipe is usually laminar at its initial propagation. Overpressure is only generated later, due to rapid 
turbulent combustion in the shear layers and recirculation zones induced by the obstacles created either 
by blockage or bending (Fairweather et al., 1999). As the turbulence intensity increases, the flame front 
configuration becomes more complicated. The overall explosion process may accelerate further as the 
flame front velocity increases, due to deflagration of turbulent burning. Turbulent velocity is a key 
parameter governing the process of flame acceleration as the rise in burning and pressure in pipe is due to 
the interaction of expansion-induced flow of a flame front that travels to the unburned mixture of a 
combustible fuel in a premixed combustion system, in which amplify the turbulence and flame speed as 
reported by Kasmani et al (2012, 2013). The influence of bends was also of interest, as they are often 
perceived as a complicated problem involving the interaction between fluid dynamics, heat transfer and 
turbulent combustion by promoting flame acceleration and detonation even though little previous published 
work exists to justify or quantify this perception of increased risk on detonation (Blanchard et al, 2010).  
Phylaktou at al (1993) showed that with a short tube of a 90 degree bend can enhance the flame speed by 
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reasonably agree well with experiment on flame speed, suggesting that flame model k- ε may be used to 
estimate the flame propagation in different pipe configuration. Some future improvements could be 
implemented into the code to overcome the diffusivity constraint, for example more sophisticated 
turbulence models like RNG or Realizable versions of the k– ε model currently implemented, in order to 
reproduce flame acceleration observed experimentally in a better way in the obstacles region. From the 
study, it shown that the coupling effect of bending and thermal diffusivity gave the dramatic influent of 
explosion severity in hydrogen-methane/air at lean concentration. In practical application, bends in 
pipework system should be taken into account as part of safety analysis and considered when placing 
explosion protection devices such as flame arresters or venting devices.  
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