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In industrial plants, a multi-agent diagnostic system using machine learning with high discrimination
performance to prevent the recurrence of accidents are desired because the damages to the company,
industrial world, and humans are serious if an accident occurs. However, machine learning needs to be
optimised according to the target, e.g. a plant operating condition diagnosis. Thus, we propose a method
that selects process signals to optimise the performance of a diagnostic machine for a plant using factor
analysis and decision-tree analysis. A feature of our optimisation method is that it accounts for
combinations of process signals. Further, an advantage of our method is that the time to create an
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optimised diagnostic machine is short. The diagnostic machines need to be updated in a limited period, e.g.

plant equipment repair, which changes regular process values. Another advantage is that our method can
be applied to various learning machines to improve performance. This advantage allows the designer of
the diagnostic system to use the best machine-learning method on each diagnostic machine. This paper
reports our methodology, our proposed method, and the experimental results where a diagnostic machine
was improved by 5.3% to 98.8% from 93.5% abnormality detection accuracy when our method which
implemented a support vector machine was applied to the diagnostic machine to detect the blockage of a
pipe in the desulfurisation process in a chemical plant simulator.

1. Introduction

Studies using machine learning to diagnose an operating condition by analysing a process signal (below,
signal) in an industrial plant have been widely performed to prevent the recurrence of accidents (Widodo,
2007, Ardi, 2009, Munesawa, 2013). Machine-learning methods are generally superior to conventional
methods such as principal component analysis (PCA) or methods of detection by thresholds. Therefore,
researchers have studied machine learning to diagnose plant operating conditions more effectively. There
are two types of machine-learning methods. One is supervised machine learning, and the other is
unsupervised machine learning. Unless stated otherwise, ‘machine learning’ in this paper refers to
‘supervised machine learning’ such as a support vector machine (SVM) (Vapnik, 1995).

However, there is a problem in improving the performance of machine learning. There are two types of
abilities in machine learning. One is the classification ability to detect a known abnormal condition (below,
abnormal condition); the other is the generalisation ability to detect an unknown abnormal condition. The
problem is that the improvement of these two abilities is exclusive.

To solve this problem, a multi-agent diagnostic system (MADS), e.g. hybrid fault diagnosis, is used (Akio,
2013). One conventional diagnostic machine is responsible for the two roles of generalisation and
classification. However, improvement of both the classification and generalisation performance is difficult
owing to the exclusive performance limitations. The advantage of an MADS is that it can separate the two
roles of generalisation and classification in a one diagnostic machine because an MADS can have two
groups with diagnostic machines which are responsible for either classification or generalisation. This
advantage overcomes the exclusive limitation of machine learning because it allows diagnostic machine
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specialisation to improve the performance of either classification or generalisation. In addition, a
framework can install the diagnostic machines created by various types of machine learning, allowing the
designer of the diagnostic system to select the best machine-learning techniques for diagnosis.

There are some methods to improve the diagnostic performance of MADSSs, such as the method proposed
by Hiroyasu (2008) which improves the both classification and generalisation, but the MADS allows the
diagnostic machine to improve only either classification or generalisation by the separation of roles. The
method proposed by You (2009) changes the internal mechanism; however, this method cannot be
applied to other machine-learning techniques. In addition, there is no method that can optimise the
classification performance on the basis of multiple combinations of signals. The optimisation needs to be
maximised as much as possible within the limited maintenance time. Furthermore, optimisation is
desirable for the applications of various types of machine learning.

Therefore, we propose a method to optimise the performance of a diagnostic system for an MADS. Our
method aims at optimising the classification performance considering signal combinations to complete the
optimisation within a limited time as soon as possible. In addition, our method has features which can be
applied to diagnostic machines of various types of machine learning. We report our methodology, the
proposed signal selection method, and the results of the evaluation experiments.

2. Our methodology

A machine-learning diagnostic machine is a calculator which can classify an operating condition ( Normal /
Abnormal ) according to the input signal value. The machine learning has a feature when the value ranges
of the signal are more clearly separated according to the operating condition, a greater improvement in the
classification performance of a diagnostic machine which created from these signals is realised. The
performance of this diagnostic machine can be expected to be higher in case that generating a diagnostic
machine by using signals which range are separated in accordance with the operating conditions.
Therefore, our method uses factor analysis to find the signals which ranges are separated by operating
condition. The factor analysis is a method to measure the factor loadings as correlation values at each
factor, which are useful to find a group of common factor. A higher contribution rate for a factor indicates
that signals included in it are more similar. The number of signals which the displacements were changed
according to the time of an abnormality occurrence ought be most because the change of the process
value propagates to the other signals. Therefore, our optimizing method selects the signals of the highest
contribution rates which has a lot of signals which values changes according to the timing of an accident
occurrances to make the best diagnostic machine.

In addition, Our method selects signals which selected by factor analysis according to the performance of
the diagnostic machines created from combinations of multiple their signals. The diagnostic performance
of the diagnostic machine is determined by a multi-dimensional mapping space (MDMS) made from
beneficial combinations of signals. The performance of the diagnostic machine declines if the MDMS of it
is generated by the signals involves noise. The way to measure the benefit of the combination of signals
for diagnosis have no choice but to measure the performance of the diagnostic machine made from the
combination of signals every time its combination changed. Therefore, the time which to obtain the most
beneficial combination of signals by measuring performance of all diagnostic machine is increases
exponentially in proportion with the number of signal combinations.

Thus, our method measures the diagnostic perfomance of the combinations of a few signals and finds the
beneficial signal combination by decision-tree analysis. The decision-tree analysis is a method of grouping
targets by the values of each attribute of the target by creating a decision tree. Our method uses decision-
tree analysis to find signal groups with a high model score according to relationship between the model
scores and a few signals.

2.1 Model score

This section explains the model score, which is the diagnostic performance score of a diagnostic machine.
The model score is an average of the percentage of correct answers in the diagnosis of normal and
abnormal operating conditions. The model score is calculated by Eq(1).
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In Eq(1), ng, and ng, are the total numbers of recorded normal and abnormal conditions, respectively; n,,
and ny,, are the recorded numbers of answers for the diagnosis of normal and abnormal conditions which
were correct, respectively; and w,, and w, are the weight coefficients. In this study, w, = w,. If a diagnostic
machine which detects abnormalities more correctly is desired, w, should be large.



3. Method

The proposed method consists of two steps. Before explaining the algorithm of our method, we define the
following variables. n process signals are defined as S;(1 < i < n). The values of each k (1 < k < K) time
step in S; are defined as x;;, the plant operating conditions of each time step k are defined as y,, and the
data set Dy is defined as a 2D vector (xqy, ..., Xnx, Vi) CONsisting of S; as an explanatory variable and y; as
an objective variable. A function M(D;) returns a model score which is calculated by evaluating each
record of each time stamp in D; by the diagnostic machine created from D;.

3.1Step 1
Step 1 of our method selects beneficial signals to find signals of which values change following an
abnormality occurence by factor analysis and decision-tree analysis.

Step 1-1 Normalisation
The value range of each signal is different. This normalisation process changes the value range of signals
to one where an average of zero and a variance is applied to D, to obtain the correct results from the
factor analysis. The normalisation is defined as Eq(2).

Xy — X%,

Zik = Sd(xl‘) (2)

In Eq(2), sd(x;) is the standard deviation, and &, is the average of the value x;;, in each signal S;. D;-N is
the data set in which D; was normalised, which consists of the vector (zyy, ..., Zug, Yi)-

Step 1-2 Applying the factor analysis

The factor analysis needs to set the number m of factors F as an analysing parameter. The contribution
rates are defined as ¢j(1 <j<m,c; = ¢, = - 2 ¢,,) of each factor F;. m increases one by one gradually
and is determined when Y7L, ¢; is larger than the threshold Th. The factor analysis of the varimax rotation
method is applied to DN which calculates the factor loadings f;; of each signal S; of each factor F;.

Step 1-3 Grouping the process signals

A decision-tree analysis is applied to the absolute values of the factor loadings f; on the factor F; which
has the highest contribution rate c¢;. The signals classified into a leaf nodes, which are the end point of the
decision tree, are defined as SG,(1 < h < ng,) . Here, ng, is defined as the number of the groups.

Step 1-4 Calculation of the base model score
The base model score Mg, is M(D;N).

Step 1-5 Calculation of the model scores of each leaf node.
The model scores M, (1 < h < ng,) are M(SGy).

Step 1-6 Exclusion of invalid process signals
Signals of the groups SGj, of which the value M;, are smaller than Mg, are removed. The remaining signals
are defined as D, and analysed in Step 2. The number of remaining signals in D, is defined as n,.

3.2 Step 2

Step 2 of our method selects the beneficial signals by measuring strictly the model score of the diagnostic
machines created from a combination of signals.

Step 2-1 Calculation of the base model score
The base model score Mg, is calculated from M (D).

Step 2-2 Evaluation of the diagnostic performance from the combination of two signals

Signal combinations Com(Dr,,2), (1 < o0 < q = ,,C;) are combinations of two signals selected from Dr,.
The data set D5 is defined as the vector (Com(Dr,2),,v,).The model scores M2 are calculated from
M(Dr3). Dr, is defined as the vector {(Com(Dr,, 2)1, M%), (Com(Dr2,2)2,M3),..., (Com(Dr,, 2) g, M2)}.

Step 2-3 Application of the decision-tree analysis
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A decision-tree analysis is applied to D;,, and the decision tree is obtained. The number of the leaf node is
defined as n3;.The leaf nodes of the decision tree are defined as LS;(1 < [ < n3). The model scores of the
signals of each leaf node LS, are defined as M.

Step 2-4 Selection of the beneficial signals
The selected signals S2 of which M3, are greater than Mp, are selected as in Eq(3).
{S51 M3, > Mg} 3)

4. Experimental evaluation

An experimental evaluation was carried out to measure the performance of the optimisation and the
effectiveness of our method applied to an assumed accident in an industrial plant.

4.1 Experimental environment

The decision-tree analysis used a method based on the CART algorithm. The SVM method was C-
classification, and the kernel of the SVM was the RBF algorithm. An script for the evaluation experiment
was created by the R language ver. 2.15.3 in Windows 7. The decision-tree analyses were executed by
the mvpart plug-in of the R language. The SVM methods were executed by the e1071 plug-in.

4.2 Process details

The experimental evaluation was performed for the desulfurisation process shown in Figure 1. The
desulfurisation process is a process that separates the input material LPG into propane and butane in a
petrochemical plant. The material is separated by a vapor-liquid equilibrium operation as steam boils the
material in a reboiler located in the bottom of the tower. The light distillate separated from the material is
extracted from the top of the tower by cooling using a heat exchanger. A part of the light distillate returns to
the distillation column in reflux. The heavy fraction is discharged from the bottom of the tower. The

categories of the sensors in Figure 1 are described in Table 1.
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Figure 1: Process of desulfurisation

Table 1: Process signals in desulfurisation process

Type of process signal Name of process signal

Flow sensor FI13101, FI3102, FI3103, FI3104, FI3105

Liquid level sensor LI3101, LI3102, LI3103

Concentration sensor | i105, 1106, QI3105

Pressure sensor P13101, PI13102, PI3103, PI13104, PI3105
Temperature sensor TI3101, T13102, TI3103, TI3104, TI3105, TI3106

4.3 Assumed abnormal conditions
It is assumed that the adhesion of impurities causes a piping blockage that inhibits the propane flow from the
flash tank to the distillation column. This accident supposes to occur near a concentration meter Q3105
located at near the safety valve on the propane flow. The meter shows the concentration of propane flow,
which is an inflow into the distillation column. Figure 2 shows the profile of the Q3105 concentration meter.
In Figure 2 the process value begins at about 98.2% as steady-state. The piping blockage as abnormality
begins at the 502"™ index where a vertical line drawn in Figure 2. The 502" index begins the gradual
decrease of the material and the 4000™ begins the rapid decrease of the material suddenly. We aims for our



proposed system to detect the anomaly before the value of concentration in Q3105 is less than 98%, at
which the distillate can no longer be shipped as product. The process signals were acquired from Visual
Modeler ver. 2.4 as a chemical plant simulator. The sampling rate of the simulation was about 1-2 s.

4.4 Applying our method
Step 1-1 was applied to normalise D; and obtains D;N. A factor analysis with m = 4 determined when
Th = 90 was applied to Dy according to Step 1-2. The factor analysis contribution rates were C; =11.2% at
F;, C, =6.3% at F,, C3 =4.5% at F;, and C, =4% at F,. According to Step 1-3, a decision-tree analysis was
applied to the absolute value of the factor loading f; which has the highest c;. These results created two
signal groups. Signal group SG; consists of seven signals: FI3101, LI3101, LI3102, LI3103, PI13101, PI13102,
and TI3106, which are shown in Figure 3. SG, consists of 15 signals: FI3102, FI3103, FI3104, FI3105, i105,
106, QI3105, PI13103, PI3104, PI3105, TI3101, TI3102, TI13103, TI3104, and TI3105, which are shown in
Figure 4. Step 1-4 calculated the base model score Mgz, as 0.935 (wn%:: 1.0, waZ—:Z: 0.867), as

calculated from M(DyN). According to Step 1-5, M; of the evaluated signals in SG; was 0.5 (Wn%: ,
Sn

Wa% = 1), and M, of the evaluated signals in SG, was 0.952 (wnzﬂ =1, wa% = 0.903). According to Step
Sa Sn Sa

1-6, the signals in SG; were removed because the model score M; = 0.5 was smaller than My,. The signals
in SG, remained for Step 2, and D, was defined as a 2D vector (S; € SGy, ).
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Figure 3: Profile of signals of the group SG1 Figure 4: Profile of signals of the group SG:

Step 2-1 calculated a model score Mg, = 0.952, which is M(Dr,). According to Step 2-2, combinations of
two signals Com(Dy,, 2) totalling 105(= 5C,) were created. D3 was consist of (Com(Dyy,2),y,). The
model score M,,, was calculated from D;5. Step 2-3 makes a decisison-tree analysis applied to Dy,. Figure
5 shows the results of the decision-tree analysis. The leaf nodes LS, , n; = 6, consist of nodes 6-11 in
Table 5. M;* was calculated from each LS;. Step 2-4 selected the beneficial signals in nodes 6, 7, 10, and
11 in LS, because the model scores M,§3 of the signals of each node 6, 7, 10, and 11 were larger than Mg,.
The 11 signals selected as an answer were: FI3102, FI3103, FI3104, FI3105, i105, i106, PI13103, PI3104,
PI3105, TI3104, and TI3105. The model score was 0.998 (wnfl—’s‘: =1, waZ—:z 0.996) on an optimised

diagnostic machine. Our method improved the model score by 0.053 from 0.935 to 0.988.

Table 5: Results of decision-tree analysis.
N=105, format: num. of node), split, n, deviance, yval * denotes terminal node
1) root 105 3.859349e-02 0.9869138
| 2) Signal1=QI3105, TI3101, TI3102, TI3103 6 1.644991e-03 0.9173634
} 4) Signal2=TI3101, TI3102, TI3103, 6 1.644991e-03 0.9173634
| F 8) Signal1=TI3101, 2 4.314610e-07 0.8966558
| L 9)Signal1=QI3105, TI3102 4 3.581534e-04 0.9277171
L 5) Signal2=PI3103, PI3104, P13105, TI3104, TI3105 9 2.904812e-03 0.9808660
} 10) Signal2=TI3104 3 469038e-04 0.9565722
L 11) Signal2=PI3103, P13104, P13105, TI3105 6 2.055057e-06 0.9930129
L 3) Signal1=F13102, FI3103, FI3104, FI3105, i105, i106, P13103,
| P13104,P13105,TI3103, TI3104 90 2.218348e-03 0.9921553
} 6) Signal1=TI3103 2 6.312550e-04 0.97562671
L 7) Signal1=F13102, FI3103, FI3104, FI3105, i105, i106, P13103, PI3104, PI3105,
TI3104 88 1.003705e-03 0.9925391
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5. Discussion

Step 1 of our method selected 15 beneficial signals of which the model score was 0.952, which is 0.017
higher than the base model score My, = 0.935, which evaluated all signals. Step 2 of our method selected
11 signals of which the model score was 0.988, which is 0.053 higher than the base model score My, =
0.935. Therefore, our method could improve the classification performance by 5.3%. A total of 22 signals
were reduced to 11 signals. The reason why the signals of SG; in Figure 3, which had low factor loadings,
are removed to use for the detection of abnormalities is because almost all of the displacements of the
signals did not change between the normal and abnormal conditions. In contrast, the signals of SG,
showed in Figure 4, which had high factor loadings, are beneficial for the detection of abnormalities
because the displacements of the signals were separated for each normal and abnormal condition. We
concluded that the factor analysis allows beneficial signals to be obtained easily and quickly.

Step 2 removed signals QI3105, TI3101, TI3102, and TI3103. The displacements of these signals are
difficult for the detection of abnormalities because they might change very slowly from when the pipe
blocking accident occurs Furthermore, the displacement of QI3105 might have returned to the initial level
of displacement. This research revealed that the signals of which the displacement changes slowly or back
to the source level of the displacement are not beneficial.

6. Conclusion

We proposed a method to select process signals to improve the classification performance of a diagnostic
machine created from machine learning to detect abnormal operational conditions. Our method uses factor
and decision-tree analyses to select signals and can be applied to various types of machine learning. In
addition, our method has a mechanism to improve the performance considering combinations of signals.
The evaluation results for our proposed method applied to a piping blockage accident in the flow process
showed that the classification accuracy was improved by 5.3%. Our future work will evaluate whether or
not our multi-agent diagnostic machine implemented with our optimised diagnostic machines is able to
diagnose abnormalities individually and correctly.
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