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specialisation to improve the performance of either classification or generalisation. In addition, a 
framework can install the diagnostic machines created by various types of machine learning, allowing the 
designer of the diagnostic system to select the best machine-learning techniques for diagnosis. 
There are some methods to improve the diagnostic performance of MADSs, such as the method proposed 
by Hiroyasu (2008) which improves the both classification and generalisation, but the MADS allows the 
diagnostic machine to improve only either classification or generalisation by the separation of roles. The 
method proposed by You (2009) changes the internal mechanism; however, this method cannot be 
applied to other machine-learning techniques. In addition, there is no method that can optimise the 
classification performance on the basis of multiple combinations of signals. The optimisation needs to be 
maximised as much as possible within the limited maintenance time. Furthermore, optimisation is 
desirable for the applications of various types of machine learning. 
Therefore, we propose a method to optimise the performance of a diagnostic system for an MADS. Our 
method aims at optimising the classification performance considering signal combinations to complete the 
optimisation within a limited time as soon as possible. In addition, our method has features which can be 
applied to diagnostic machines of various types of machine learning. We report our methodology, the 
proposed signal selection method, and the results of the evaluation experiments. 

2. Our methodology 

A machine-learning diagnostic machine is a calculator which can classify an operating condition ( Normal / 
Abnormal ) according to the input signal value. The machine learning has a feature when the value ranges 
of the signal are more clearly separated according to the operating condition, a greater improvement in the 
classification performance of a diagnostic machine which created from these signals is realised. The 
performance of this diagnostic machine can be expected to be higher in case that generating a diagnostic 
machine by using signals which range are separated in accordance with the operating conditions. 
Therefore, our method uses factor analysis to find the signals which ranges are separated by operating 
condition. The factor analysis is a method to measure the factor loadings as correlation values at each 
factor, which are useful to find a group of common factor. A higher contribution rate for a factor indicates 
that signals included in it are more similar. The number of signals which the displacements were changed  
according to the time of an abnormality occurrence ought be most because the change of the process 
value propagates to the other signals. Therefore, our optimizing method selects the signals of the highest 
contribution rates which has a lot of signals which values changes according to the timing of an accident 
occurrances to make the best diagnostic machine. 
In addition, Our method selects signals which selected by factor analysis according to the performance of 
the diagnostic machines created from combinations of multiple their signals. The diagnostic performance 
of the diagnostic machine is determined by a multi-dimensional mapping space (MDMS) made from 
beneficial combinations of signals. The performance of the diagnostic machine declines if the MDMS of it 
is generated by the signals involves noise. The way to measure the benefit of the combination of signals 
for diagnosis have no choice but to measure the performance of the diagnostic machine made from the 
combination of signals every time its combination changed. Therefore, the time which to obtain the most 
beneficial combination of signals by measuring performance of all diagnostic machine is increases 
exponentially in proportion with the number of signal combinations. 
Thus, our method measures the diagnostic perfomance of the combinations of a few signals and finds the 
beneficial signal combination by decision-tree analysis. The decision-tree analysis is a method of grouping 
targets by the values of each attribute of the target by creating a decision tree. Our method uses decision-
tree analysis to find signal groups with a high model score according to relationship between the model 
scores and a few signals. 

2.1 Model score 
This section explains the model score, which is the diagnostic performance score of a diagnostic machine. 
The model score is an average of the percentage of correct answers in the diagnosis of normal and 
abnormal operating conditions. The model score is calculated by Eq(1). ܯ = ௔ݓ＋௡ݓ1 ൬ݓ௡ ݊஺௡݊ௌ௡ + ௔ݓ ݊஺௔݊ௌ௔൰ (1) 

In Eq(1), ݊ௌ௡ and ݊ௌ௔ are the total numbers of recorded normal and abnormal conditions, respectively; ݊஺௡ 
and ݊஺௔ are the recorded numbers of answers for the diagnosis of normal and abnormal conditions which 
were correct, respectively; and ݓ௡ and ݓ௔ are the weight coefficients. In this study, ݓ௡ =  ௔. If a diagnosticݓ
machine which detects abnormalities more correctly is desired, ݓ௔ should be large. 
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3. Method 

The proposed method consists of two steps. Before explaining the algorithm of our method, we define the 
following variables. ݊ process signals are defined as ௜ܵ(1 ≤ ݅ ≤ ݊). The values of each ݇	(1 ≤ ݇ ≤  time (ܭ
step in ௜ܵ are defined as ݔ௜௞, the plant operating conditions of each time step ݇ are defined as ݕ௞, and the 
data set ்ܦ is defined as a 2D vector (ݔଵ௞, … , ,௡௞ݔ  ௜ asݕ ௞) consisting of ௜ܵ as an explanatory variable andݕ
an objective variable. A function (்ܦ)ܯ returns a model score which is calculated by evaluating each 
record of each time stamp in ்ܦ by the diagnostic machine created from ்ܦ. 

3.1 Step 1 
Step 1 of our method selects beneficial signals to find signals of which values change following an 
abnormality occurence by factor analysis and decision-tree analysis. 
 
Step 1-1 Normalisation 
The value range of each signal is different. This normalisation process changes the value range of signals 
to one where an average of zero and a variance is applied to ்ܦ to obtain the correct results from the 
factor analysis. The normalisation is defined as Eq(2). ݖ௜௞ = ௜௞ݔ − (௜ݔ)݀ݏపഥݔ  (2) 

In Eq(2), ݀ݏ(ݔ௜) is the standard deviation, and ݔపഥ  is the average of the value ݔ௜௞ in each signal ௜ܵ. ்ܰܦ is 
the data set in which ்ܦ was normalised, which consists of the vector (ݖଵ௞, … , ,௡௞ݖ  .(௞ݕ
 
Step 1-2 Applying the factor analysis 
The factor analysis needs to set the number ݉ of factors ܨ as an analysing parameter. The contribution 
rates are defined as ௝ܿ(1 ≤ ݆ ≤ ݉, ܿଵ ≥ ܿଶ ≥ ⋯ ≥ ܿ௠) of each factor ܨ௝. ݉ increases one by one gradually 

and is determined when ∑ ௝ܿ௠௝ୀଵ  is larger than the threshold ܶℎ. The factor analysis of the varimax rotation 

method is applied to ்ܰܦ which calculates the factor loadings ௝݂௜ of each signal ௜ܵ of each factor ܨ௝.  
 
Step 1-3 Grouping the process signals  
A decision-tree analysis is applied to the absolute values of the factor loadings ଵ݂ on the factor ܨଵ which 
has the highest contribution rate ܿଵ. The signals classified into a leaf nodes, which are the end point of the 
decision tree, are defined as ܵܩ௛(1 ≤ ℎ ≤ ݊ீଵ) . Here, ݊ீଵ is defined as the number of the groups. 
 
Step 1-4 Calculation of the base model score 
The base model score ܯ஻ଵ is (்ܰܦ)ܯ. 
 
Step 1-5 Calculation of the model scores of each leaf node. 
The model scores ܯ௛(1 ≤ ℎ ≤ ݊ீଵ) are ܯ(ܵܩ௛). 
 
Step 1-6 Exclusion of invalid process signals 
Signals of the groups ܵܩ௛ of which the value ܯ௛ are smaller than ܯ஻ଵ are removed. The remaining signals 
are defined as ்ܦଶ and analysed in Step 2. The number of remaining signals in ்ܦଶ is defined as ݊ଶ. 

3.2 Step 2 
Step 2 of our method selects the beneficial signals by measuring strictly the model score of the diagnostic 
machines created from a combination of signals. 
 
Step 2-1 Calculation of the base model score 
The base model score ܯ஻ଶ is calculated from ܯ(்ܦଶ). 
 
Step 2-2 Evaluation of the diagnostic performance from the combination of two signals 

Signal combinations ்ܦ)݉݋ܥଶ, 2)௞(1 ≤ o ≤ ݍ = ଶ௡మܥ ) are combinations of two signals selected from ்ܦଶ. 

The data set ்ܦଷ  is defined as the vector (்ܦ)݉݋ܥଶ, 2)୭, ୭ଶܯ ୭).The model scoresݕ  are calculated from ܯ(்ܦଷ). ்ܦସ is defined as the vector {(்ܦ)݉݋ܥଶ, 2)ଵ,Mଵଶ), (்ܦ)݉݋ܥଶ, 2)ଶ,Mଶଶ),…, (்ܦ)݉݋ܥଶ, 2)௤, M௤ଶ)}. 

 
Step 2-3 Application of the decision-tree analysis 
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5. Discussion 

Step 1 of our method selected 15 beneficial signals of which the model score was 0.952, which is 0.017 
higher than the base model score ܯ஻ଵ = 0.935, which evaluated all signals. Step 2 of our method selected 
11 signals of which the model score was 0.988, which is 0.053 higher than the base model score ܯ஻ଵ = 
0.935. Therefore, our method could improve the classification performance by 5.3%. A total of 22 signals 
were reduced to 11 signals. The reason why the signals of SGଵ in Figure 3, which had low factor loadings, 
are removed to use for the detection of abnormalities is because almost all of the displacements of the 
signals did not change between the normal and abnormal conditions. In contrast, the signals of SGଶ 
showed in Figure 4, which had high factor loadings, are beneficial for the detection of abnormalities 
because the displacements of the signals were separated for each normal and abnormal condition. We 
concluded that the factor analysis allows beneficial signals to be obtained easily and quickly. 
Step 2 removed signals QI3105, TI3101, TI3102, and TI3103. The displacements of these signals are 
difficult for the detection of abnormalities because they might change very slowly from when the pipe 
blocking accident occurs Furthermore, the displacement of QI3105 might have returned to the initial level 
of displacement. This research revealed that the signals of which the displacement changes slowly or back 
to the source level of the displacement are not beneficial. 

6. Conclusion 

We proposed a method to select process signals to improve the classification performance of a diagnostic 
machine created from machine learning to detect abnormal operational conditions. Our method uses factor 
and decision-tree analyses to select signals and can be applied to various types of machine learning. In 
addition, our method has a mechanism to improve the performance considering combinations of signals. 
The evaluation results for our proposed method applied to a piping blockage accident in the flow process 
showed that the classification accuracy was improved by 5.3%. Our future work will evaluate whether or 
not our multi-agent diagnostic machine implemented with our optimised diagnostic machines is able to 
diagnose abnormalities individually and correctly. 
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