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achieve uniform coverage of the enclosure surface to the greatest extent practicable is necessary’, but no 
reason for this is given. As the pressure inside an enclosure is uniform across the surface, the number of 
vents should not matter for the same vent area, unless the number influences the vent process, as found 
by Fakandu et al. (2013). 
For free venting the pressure loss of the flow of unburned gas through the vent is one cause of the vent 
overpressure, Pfv, (Fakandu et. al., 2011, 2012, 2013; Kasmani et al., 2011). and the other is the external 
explosion, Pext (Cubbage and Simonds, 1955, Cooper et al 1986 and Bauwen 2010). Both of these causes 
of the overpressure are potentially influenced by the shape of the vent. The flow through the vent is 
influenced by any change in Cd with the shape of the vent. The shape of the vent may also influence the 
shape and area of the flame upstream of the vent, which influences the flame speed and flow through the 
vent. The pressure loss in pipe flow is related to the flow area base on the hydraulic diameter and this 
requires a square duct to have 28% greater flow area than a circular duct for the same pressure loss. The 
implication of this is that for the same flow area the pressure loss would be higher for the square duct for 
the same mass flow rate.  
If the same considerations applied to flow through circular and square orifices then the implication would 
be that Cd would be lower for square orifice. Andrews and Ahmad (1994) have shown that non-circular 
orifices do have lower Cd than circular orifices and rectangular orifices had the greatest difference. If a 
vented explosion overpressure was controlled by the pressure loss of unburned gas through the vent, then 
it would be expected that a square vent would have a higher overpressure than a circular vent. However, 
this would only occur if the shape of the vent did not reduce the upstream flame speed and hence reduce 
the mass flow of unburned gas through the vent.  
The external explosion is also influenced by changes in Cd through changes in the pressure loss and the 
turbulence in the external jet flow and this influences the external flame speed. Thus a lower Cd for square 
vents would be expected to increase the external jet turbulence through the increase in pressure loss. This 
would lead to higher flame speeds in the external jet and potentially higher overpressures. However, jets 
that are not round were shown by Koshigoe et al.(1989) and Gutmark et al. (1985) to influence the rate of 
spread of the jet and non-circular jets were shown to spread faster than circular jets. This would mean that 
a non-circular vent would have a greater entrainment of air and the jet would slow down more quickly and 
have lower flame speeds and overpressures as a consequence. This was the effect of the vent shape 
found in this work which shows that square vents had a lower overpressure than circular vents. 
The only previous work we have found on the effect of the vent shape in relation to vent design is in the 
work of Nagy (1983). He describes an extensive series of tests using compressed air and measured the 
pressure as it flowed through the orifice type vents. Different vessel volumes and sizes of vents were used 
with three different vent shapes: circular, square and rectangular. He concluded that the shapes of the 
vent (circular, square and rectangular) did not significantly influence the orifice Cd and a mean value of 0.9 
was recommended for all vent areas and all volumes. This is probably the origin of the neglect of vent 
shape in the vent design standards. Nettleton (1975) also found that the pressure generation in vented 
vessels with different vent shapes had little or no effect on the explosion over pressure. However, there 
were three issues with the experiments of Nagy (1983): firstly, no vented explosions were carried out with 
vents of different shape; secondly, the tests were carried out for very small vents relative to the volume 
and the lowest Kv was 19; thirdly, the values of Cd were too high and some were >1 which is impossible. 
When the Nagy (1983) data is examined there was a difference in Cd for circular and square or rectangular 
vents for the lowest vent areas in small vessels. This was 0.72 for circular vents and 0.82 for square or 
rectangular vents. The effect of this difference would, for the same vent area, give a lower overpressure for 
square vents compared with circular vents, which is exactly the finding of the present work. However, in 
the work of Andrews and Ahmad (1994) the Cd for a thick circular hole was 0.9 and for a rectangular hole 
of similar thickness it was 0.74 and in their work no Cd greater than 1 was measured. The higher Cd for a 
circular hole was due to using a thick plate, which allowed flow re-attachment within the hole. 

2. Experimental methods 

A small cylindrical vessel of 10 litres volume (L=0.460m, D=0.162m and L/D 2.8) was used for vented gas 
explosion with free venting, as shown in Fig. 1. This small vessel has been shown (Fakandu et al., 2011) 
to give reasonable agreement with vented explosion data from larger vessels (Cooper et al., 1988; 
Bauwens et al., 2010). The European vent design standard (EU, 2007) has no influence of vessel volume 
other than that contained in the Kv vent coefficient and hence the size of the vessel used in experimental 
explosion venting research should not influence the results. However, Kasmani et al. ( 2006) showed that 
there was a non-linear influence of the vented vessel volume, V, in the literature. The present small 10L  
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Figure 2 Pressure time records for P0 and P2 for 7.5% ethylene-air with circular vent.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Square and circular vents compared for 10% methane-air (a) Kv=10.9 (b) Kv=3.6 

controlled the peak overpressure in this case. The time of arrival of the flame at the vent is marked as Vent 
in Fig. 2, which also shows that the flame was external to the vent at the peak overpressure. The pressure 
peak for the flow through the vent, Pfv, was much lower than Pext and occurred before the flame reached 
the vent, as it was due to unburned gas flow through the vent. 
Fig. 3 compares the pressure time records for circular and square vents for 10% methane-air for Kv of 10.9 
and 3.6. The overpressure due to the flow through the vent, Pfv, was the dominant overpressure for both  
circular and square vents for Kv=10.9 and the overpressures were very close in magnitude for the two vent 
shapes. Kasmani et al. (2010) has previously shown that for high Kv the dominant overpressure was Pfv.  
For the larger vent area, Kv = 3.6, the results in Fig. 3b shows that Pext was the dominant overpressure for 
both circular and square vents. The influence of vent shape was small for Pfv similar to Fig. 3a, but a 
significant influence of vent shape was found in the dominant external overpressure, Pext. The circular vent 
had more than 30% higher external explosion overpressure than that of the circular vent. This significant 
change was a result of the greater rate of jet spreading for non-circular jets, as reviewed above, which 
resulted in faster entrainment of air into the jets and hence reduced the external flame speeds which 
reduced the external overpressure for the square vent. For Kv=10.9 Fig. 3b shows a major reduction in Pext 
for the square vent, but in this case Pext was not the dominant overpressure. 
Table1 shows the summary of all the experiments conducted for both circular and square vents by varying 
the vents for three Kv, with three repeat tests for each Kv. Table 1 also shows whether the peak 
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overpressure was due to Pfv or Pext. Also shown is the average percentage decrease from the 
overpressure obtained with the circular vent, when compared to the square vent for the two gas mixtures. 
Table 1 shows that for methane and ethylene at all Kv the square vents always had a lower overpressure 
than the circular vents. The difference varied but was typically 30% lower. For methane with Kv = 10.9 the 
two vent shapes had practically the same overpressure, as also shown in Fig. 3a. For ethylene the results 
were very consistent with >30% lower overpressures with square vents at all Kv. These results clearly 
show that for most venting conditions a square vent will give a significantly lower overpressure than a 
round jet and hence give better protection.  

Table 1:  Summary of maximum reduced pressure for different gas mixtures and vent shapes  

Kv 10% Methane-air (Pred-bar) 7.5% Ethylene-air (Pred-bar) 

  Circular  Square Increase (%) Circular  Square Increase (%) 

3.6 0.062 Pext 0.046 Pext 

35 
0.30 Pext 0.23 Pext 

30 3.6 0.076 Pext 0.051 Pext 0.29 Pext 0.24 Pext 

3.6 0.064 Pext 0.049 Pext 0.32 Pext 0.23 Pext 

5.4 0.069 Pext 0.056 Pext 

17 
0.35 Pext 0.23 Pext 

46 5.4 0.063 Pext 0.055 Pext 0.31 Pext 0.23 Pext 

5.4 0.059 Pext 0.052 Pext 0.31 Pext 0.21 Pext 

10.9 0.133 Pfv 0.129 Pfv 

3 

0.74 Pext 0.57 Pfv 

31 10.9 0.137 Pfv 0.133 Pfv 0.72 Pext 0.56 Pfv 

10.9 0.137 Pfv 0.132 Pfv 0.78 Pext 0.59 Pfv 

4. Flame speeds 

The flame speeds for Kv = 5.4 are shown in Fig. 4 as a function of the distance from the end flange, where 
the spark was located. The maximum or peak flame speed with the circular vent for 10% methane-air 
downstream of the vent was 30m/s and 85m/s for 7.5% ethylene-air. However, when the square vent was 
used the peak flame speed was reduced to 21m/s and 75m/s for the 10% methane-air and 7.5% ethylene-
air respectively. This was caused by the faster entrainment of air for the square vent thereby reducing the 
speed of the propagating flame as shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Comparison of the flame speeds for square and circular vents for Kv=5.4 

The flame speed upstream of the vent is also shown in Fig. 4 to be lower for square vents than circular 
vents. This effect was greater as Kv increased. This lower flame speed would produce a lower mass flow 
of unburned gas through the vent and hence reduce the overpressure for square vents. However, square 
vents have a lower Cd than circular vents and this would increase the overpressure for square vents. The 
combined effects nearly cancel out. For methane with Kv of 10.9 the change in overpressure between 
circular and square vents was very small and this is the only condition where the overpressure was caused 

0 200 400 600 800
0

20

40

60

80

100

120

140

Distance from Spark (mm)

 Circular vent
 Square vent

F
la

m
e 

S
p

ee
d

-S
f(m

/s
)

 

 

F
la

m
e 

S
p

ee
d

-S
f(m

/s
)

Distance from Spark (mm)

10 Methane-air(K
v
=5.4)

Vent position

0 200 400 600 800
0

20

40

60

80

100

120

140

160

180

Vent position

 Circular vent
 Square vent

7.5 Ethylene-air(K
v
=5.4)

  

 

167



by the flow through the vent and not the external overpressure. For ethylene with Kv = 10.9 Table 1 shows 
that square vents had the highest overpressure due to flow through the vent, but the two overpressures Pfv 
and Pext were nearly the same at this condition 

5. Conclusions 

The use of square vents is preferable to circular vents, which give at least 30% higher overpressure than 
square vents. The circular vents gave higher external overpressure (Pext) when compared with the square 
vents, while small differences were found for the internal pressure (Pfv). This effect was concluded from 
literature work on non-circular jets, to be due to the faster entrainment of air by the square vent jet flow as 
compared to the circular vent jet flow. This resulted in slower external flames. For methane with a Kv of 
10.9, Pfv was the higher overpressure and in this case there was very little difference in the overpressures 
for circular and square vents. Where the peak overpressure was due to the external explosion the square 
vent always had a lower overpressure than for circular vents. The more reactive ethylene/air mixtures 
showed more than 30% increase in overpressure at all Kv for round vents compared with square vents. 
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