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Measured data from instruments are usually composed of errors. Data reconciliation is applied to improve the 
accuracy of measured data to satisfy mass and energy balances of the process. This work is focused on 
dynamic data reconciliation of a utility heat exchanger using hot oil from a waste heat recovery unit as a hot 
stream to heat up ethane product as a cold process stream from a natural gas separation plant. The 
measured data include flow rates, supply and target temperatures of hot oil and cold process streams. The 
dynamic data reconciliation was done by a combined optimization and constraint model solution strategy by 
converting the differential equations of the unsteady state equations to the algebraic equations using Euler’s 
approximation. Adjustment of the hot oil flow rate of the fixed-area utility exchanger leads to a change in the 
target temperatures of the hot oil and cold process streams, as well as energy consumption. Excel’s solver 
and commercial optimization software, General Algebraic Modelling System (GAMS), with a weighted least-
square objective function are used for performing data reconciliation to validate the measured data and energy 
consumption. After data reconciliation was completed, estimates of process variables are more accurate and 
satisfy the process constraints. 

1. Introduction 
A modern chemical plant consists of a large number of process units, which are interconnected together by a 
complicated network of streams. Measurements of flow rates, temperatures, pressures, levels, concentrations 
of components and automatically recorded are routinely made for the purpose of process control, online 
optimization, or process performance evaluation. Measured process data are certainly corrupted by errors 
during the measurement. The total error in a measurement, which is the difference between the measured 
value and the true value of a variable, is represented as the sum of the contributions from two types of errors–
–random errors and gross errors. 
Data reconciliation (DR) is a technique that has been developed to improve the accuracy of measurements by 
reducing the effect of random errors in data. This technique uses process model constraints and obtains 
estimates of process variables by adjusting process measurements so that the estimates satisfy the 
constraints (Narasimhan and Jordache, 2000).   
The DR problem was first introduced by Kuehn and Davidson (1961) for linear steady-state models. As 
industrial processes are subject to regular changes, it is essential to reconcile process measurements in a 
dynamic scenario (Kong et al., 2000).Dynamic processes are commonly described by sets of nonlinear 
ordinary differential equations, which may contain model parameters and initial conditions that should be 
estimated from available plant data.The necessity of developing nonlinear dynamic data reconciliation (NDDR) 
methods was proposed by Liebman and Edgar (1998), and the advantages of using nonlinear programming 
over traditional steady-state DR methods were demonstrated. Liebman et al. (1992) developed their main 
NDDR algorithm. Their approach was based on simultaneous optimization and solution techniques where 
efficient state estimation was performed. In general, three classes of algorithms have been used to solve 
these NDDR problems (Kong et al., 2000; Dovi and Del Borghi, 2001): the extended Kalman filter (see, for 
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example, Sirohi and Choi, 1996); artificial neural networks (see, for example, Karjala and Himmelblau, 1994); 
and constrained nonlinear programming. Dynamic constrained nonlinear programming consists of the 
optimization of a linear or nonlinear objective function, subject to nonlinear dynamic and algebraic constraints. 
The goal of this research is to use DR technique to remove the random errors from dynamic data of a hot-oil 
heat exchanger. DR technique use a weighted least-square objective function, based on the assumption that 
random errors follow normal distribution with zero mean and known variance. After DR is done, the energy 
usages of this heat exchanger were corrected and compared to the true values. 

2. Physical system 
The application of NDDR technique on a simulated dynamic hot-oil heat exchanger was demonstrated. The 
dynamic model for energy balance can be written as: 

 (1) 

(2) 

 

 

 

(3) 

The Proportional Integral and Derivative (PID) controller equation to increase the hot oil flowrate  by 
changing set point  can be written as: 

(4) 

 

 (5) 

where  is heat duty (W),  is volumetric flow rate of hot oil(m3/h), is volumetric flow rate of ethane 
product(m3/h),  is inlet temperature of hot oil (°C),  is outlet temperature of hot oil (°C),  is inlet 
temperature of ethane product (°C),  is outlet temperature of ethane product (°C),  is overall heat 
transfer coefficient (W/m2 °C),  is heat transfer area (m2), and  is set point. The physical constants for the 
model, which are not dependent on the operating conditions, are shown in Table 1. 

Table 1:  Physical data for dynamic hot-oil heat exchanger simulation 

Parameter Value Units   
 2.4245 kJ/kg °C   
 2.3420 kJ/kg °C   

 778.15 kg/m3   
 37.73 kg/m3   

 310.6 W/m2°C   
 46.1 m2   

3. Simulation data 
This task involves simulating true values and measured values. True value is the value which assumes that 
the variable is directly measured without errors. Measured value is true value with random errors, like actual 
process data. There are eight process variables of a hot-oil heat exchanger which are , , , , 

, , , and . True values were simulated at time step of 0.1 second over time period of 60 seconds 
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obtained through numerical integration of the dynamic ordinary differential equations. Euler’s approximation is 
one of the numerical integration used in this work. And then, 300 data are sampled at sampling time of 0.2 
second. Measured values were obtained by adding Gaussian noise to sampled true values using Gaussian  
Random Number Generator through http://www.random.org/ to generate random numbers from a Gaussian 
distribution (a normal distribution). All measured variables are shown in Figure 1. These process variables are 
divided into two groups, steady and dynamic ones. Steady variables are , , and . Dynamic variables 
are , , and . 

     

Figure 1: Variables in a hot-oil heat exchanger.              Figure 2: Dynamic data reconciliation steps. 

4. Application of dynamic data reconciliation 
First, measured process values were generated by adding random noise to the true values as shown step 
0 in Figure 2. Next, Excel’s solver was used to find initial and predictive values which minimize sum of the 
squared difference between measured value and predictive value; calculated from Euler’s approximation 
as shown in step 1 in Figure 2.The reconciliation method used in this work is NDDR, originally developed 
by Liebman (1991). Gross errors are assumed as negligible (Yongkasemkul, 2012). This data 
reconciliation approach can be done on both steady and dynamic process as well as estimating 
parameters and unmeasured variables (McBrayer et al., 1998). The general NDDR problem can be written 
as: 

                                                                                                      (6)          

subject to:                                                                                             (7) 

                                                                                            (8) 

                                                                                            (9) 

where   = estimates,  = discrete measurement,  = measurement noise standard deviation, 
  = differential equation constraints,  = algebraic equality constraints, and  = inequality constraints  
 
The measurement and estimate vectors include both measured states and inputs. The measurement noise 
standard deviations result from the reproducibility of each measurement device. 
For most applications the objective function is weighted least-square: 

 (10) 

where is the vector of values of the estimate functionsat discrete time , is the vector of 
measurementsat time , is the covariance matrix where each diagonal element, , and  and 
represents the current time. The off-diagonal terms can be assumed to be zero for most cases. Finally, 

weighted least-square objective function in GAMS model, as shown in step 2 in Figure 2, is used to 
minimize sum of the difference between mean of measured values and estimates for steady variable 
group, as shown in Eq(11). And the differences between predictive values (300 data) and estimates are 
minimized for dynamic variable group, as shown in Eq(11). 
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Euler’s approximation. Increase in hot oil flow rate leads to increase in outlet temperatures of hot oil and 
ethane product, as well as energy consumption rate. Excel’s solver and commercial optimization software, 
General Algebraic Modeling System (GAMS), with a weighted least-square objective function are used for 
data reconciliation to validate the measured data and energy consumption. After data reconciliation was 
completed, estimates are more accurate satisfying the process constraints. The analysis of results shows 
that this approach provides accuracy from the reducing measurement mean, estimate mean, and  error 
SD,  in performing data reconciliation. 
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