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Particle Filtering is a nonlinear and non-Gaussian model-based Bayesian Filtering algorithm based on 
Monte Carlo Sampling techniques. This filtering methodology can be used to increase the reliability and 
the availability of the monitored system combining the measurements on the system itself and the 
analytical model of the observed phenomena. Inside this context, the basic idea of Particle Filtering is the 
estimation of the system degradation through a series of weighted particles simulating the dynamic 
evolution of a time process. Two different mathematical models are needed in order to implement it: firstly, 
the stochastic observation equation linking the measures (and their uncertainties) with the current state of 
the system, and secondly the stochastic degradation equation linking the present state to the prior state, or 
the Dynamic State Space (DSS) model. The DSS model is usually based on deterministic parameters plus 
an artificial noise added through Monte Carlo Sampling in order to produce a stochastic process. The 
simple deterministic model with added noise is not able to account for all the uncertainties occurring in a 
real environment in many cases, producing poor results. Thus, the definition of a Stochastic Dynamic State 
Space (SDSS) model is proposed here. The SDSS merge the deterministic equation of the observed 
phenomenon with the statistical definition of the parameters available in literature (or mathematically 
extrapolated from historical data). It is inserted in a Particle Filtering algorithm and applied to crack growth 
estimation in metallic structures. The results of the algorithm with the Stochastic Dynamic State Space 
model are compared with a Particle Filtering based on traditional DSS in terms of crack length estimation 
and remaining lifetime evaluation performances. 

1. Introduction 
All the model-based filtering methods are based on a Dynamic State Space (DSS) model governing the 
time-evolution of the system. In a Bayesian formulation, the DSS specifies the conditional density of the 
state given the previous state (Haug, 2005). This DSS model is founded on the mathematical equations 
describing the observed phenomena, in which an artificial noise is added in order to produce a stochastic 
process. Notwithstanding the simple deterministic equations with added noise can be effective for the 
system state estimation, they can produce poor results in prediction problems. As a matter of fact, a lot of 
mathematical models have parameters known in statistical terms, because of the uncertainties about the 
real phenomenon (as fatigue crack growth, creep degradation, damping of dynamical systems etc.) and 
the intrinsic uncertainty of regression methods. As a consequence, the implementation of the mathematical 
laws with deterministic parameters can lead to improper conclusion about the remaining lifetime of the 
system, a crucial issue in a maintenance perspective. So a Stochastic Dynamic State Space (SDSS) 
model for Particle Filtering (PF) algorithm is proposed here. 
Literature about Particle Filtering is extensive and another paper will be useless, so the authors decide to 
omit in-depth mathematical dissertation of the algorithm. The interested reader can refer to Arulampalam 
et al. (2002) for further information. The paper is organized as follow: a summary of the PF concept will be 
given inside the section 2. The thorough explanation of the proposed Stochastic DSS model will be given 
in the section 3 whereas results and conclusions are discussed in sections 4 and 5. 
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2. Basic of Particle Filtering methods 
Let you consider a DSS model  describing the evolution of a general system state and suppose that 
the DSS model satisfies the hypothesis of the Markov processes of order one. The evolution equation can 
be expressed by the general function visible in (1), where the subscript  indicates the general  discrete 
time step. If measurements  of the (unknown) state  are available, it is also possible to write the 
observation equation linking the measures  with the system state  (2). 

(1) 

(2) 

The term  in (1) represents the noise added to the deterministic equation to produce a stochastic 
process, while  in (2) represents the noise on the measures (generally unknown). The objective is the 
evaluation of a conditioned Probability Density Function (PDF) of the system state given the vector of the 
noisy observations . It is possible to solve this problem with two steps: the prediction and the 
update (Cadini et al., 2009). The prediction of the random variable  at the  time step is expressed by 
the Chapman Kolmogorov equation (3). The updating of this prediction is made as soon as a new 
observation becomes available through Bayes’ rule (4).

(3) 

(4) 

Where  is the likelihood of the observation,  is the posterior PDF at the previous step 
(becoming the prior) and  is a normalizing constant. Unfortunately, the analytical resolution of 
(3) and (4) is not possible in the most of the engineering problems. Numerical methods based on Monte 
Carlo Sampling as the Sequential Importance Sampling (SIS) can be used as an alternative. 

2.1 Sequential Importance Sampling / Resampling 
Assuming a known posterior PDF , it can be approximated by  particles  sampled by the 
same PDF (5). 

(5) 

However, sampling by the true posterior PDF is usually impossible, but the Importance Sampling 
technique can overcome the problem. Suppose to have a general PDF from which it is simple to draw 
samples (or particles) , the exact posterior target distribution can be written as a function of this PDF 
called Importance Density Function (IDF)  Eq (6). The posterior can be approximated by a set of 

 normalized weights  associated to the particles  Eq (7). 

(6) 

  (7) 

The core of the problem is to define the particle weights . It is possible to demonstrate the weights at 
 step depending on these at the  step, the likelihood of the observation, the transition PDF 

and the IDF, as visible in (8). The normalization of the weights is expressed in Eq (9) (Cadini 
et al., 2009). 

(8) 

(9) 

It’s easy to notice the dependence of the weights at  time to the previous ones. So, the estimation of the 
posterior PDF is a sequential updating of the prior, available at time 0. A well-known problem of SIS is the 
concentration of the weights into a small set of particles producing poor results in the PDF estimation.
Thus different Resampling techniques have been developed over the last years. Resampling consists in a 
new particle sampling and the re-setting of the weights. It can be made when the number of the 
effective particles underneath a certain threshold or at each time iteration. In this work, the Systematic 
Resampling technique is used. See Arulampalam et al. (2002) for more information about Resampling.
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3. Dynamic State Space model 
As mentioned in the above section, the DSS model relates the state  at previous time step with the 
state . The state is not univocally identified, but it has an associated conditional PDF because of the 
random noise. This associated PDF is named Transition PDF  and it describes the probability of 

 given the previous value . Concerning mathematical law describing the state evolution, it depends 
on some parameters  having some physic senses or empirically extrapolated. If the 
dependence of the state  from the parameter vector is highlighted, the Transition PDF becomes 

. Inside the standard PF applications available in literature, mathematical parameters 
have always been set as deterministic ones. So all the possible state samples are governed by the same 
deterministic trajectory altered by random noise . According to these considerations, it is simple to infer 
the definition of the model parameter and the artificial noise become crucial issue for the performance of 
the algorithm. 

3.1 Noise definition 
The artificial random noise is not in-depth studied inside the Particle Filter literature. Notwithstanding the 
mathematical treatment of the artificial noise is easy and it is not interesting from a theoretical viewpoint, it 
becomes very important for the applicability of PFs to real cases. Considering a noise summed to (10) and 
a noise multiply by (11) the deterministic evolution of whatever system .  

(10) 

(11) 

The expected value of the random variable  must to be equal to the system state described by the 
deterministic part of the DSS only, hence . This implies the expected value of the noise 
has to be zero in the Eq (10) and one in the Eq (11). Otherwise, the DSS produces a biased evolution of 
the system with respect to the deterministic equation. Focusing on noise variance, it should be defined 
according to previous experience, the uncertainty of the measurement system and the uncertainty 
produced by the real operating conditions. The noise has not a single correct definition and it depends on 
the application. In section 4 an example of noise added to deterministic equation is pointed out. 

3.2 Stochastic definition of model parameters 
If the law parameters have a deterministic definition inside the PF algorithm (as in the standard PF 
application), the artificial noise is the only element producing a stochastic process. A new approach is 
proposed in this work. Empirical laws are usually known with a related uncertainty due to possible errors 
inside the measurement systems, the shortage of available data, the uncertainty related to the regression 
procedures or the intrinsic uncertainty of the real environment. So, many statistical descriptions of model 
parameters are available in literature for a wide range of engineering problems. It is possible to use the 
parameter PDFs to produce a swarm of possible state evolution, in which every sample of the system 
state has a particular sample of the parameter PDFs. 
Let you consider the parameter vector . Every element of the vector is a random variable describing 
one parameter of the DSS equation. Now, the  parameter can be defined .
In addition, it is possible to define the covariance matrix of , . The extra-diagonal elements 
are different from zero only if a correlation among the different parameters  is present. So, the parameter 
vector  can be completely defined through a multivariate PDF with expected value and covariance matrix 
expressed in Eq (12) and Eq (13), respectively. 

(12) 

(13) 

The pseudo-code of PF algorithm with the stochastic definition of the model parameter is the following: 
1. Starting from step  (assuming known the quantities ):

- Initialize  particles  and their weights   

- Draw  samples from multivariate PDF of parameters 
- Assign at each particle one parameter sample  and the weights ,

2. Run PF algorithm: 
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- Sequential estimation of  according to normalized weights (equation 7, 8 and 9). 
3. If resampling is required at general  step: 

-  particle resampling  according to some resampling method 
- Re-draw  samples from multivariate PDF of parameters 
- Re-assign parameter samples at each particle  and the weights ,

- Go to step 2. 
Since the parameter  remains the same along the particle life and the IDF and the Transition PDF 
remain the same during the SIS procedure, the hypotheses of Markov processes are satisfied. 

4. Application to a simulated fatigue crack growth problem 
Consider a simulated aluminium 2024 plate, within a 1.8 mm centre-crack inside, subjected to constant 
amplitude load. The algorithm is used to estimate the crack length starting from sequential noisy 
observation and to estimate the Residual Useful Life (RUL) of the plate, considering a failure crack length 
of 140 mm. The DSS model of Fatigue Crack Growth (FCG) (14) is built through the crack growth velocity 
expressed by NASGRO equation (15). The authors omit other information about Fracture Mechanics and 
FCG for concision. See Broek (1989), Giglio and Manes (2008) Giglio et al. (2010), and NASA J.S. centre 
(2002) for additional material. 

(14) 

(15) 

Virkler et al. (1978) have proved the intrinsic uncertainties of the empirical parameters of the FCG curve 
due to the countless uncertainties of the real environment. Roughly speaking, this implies that a crack 
propagation can observe a FCG equation in which the parameters are slightly different with respect to the 
average values. Then, it is possible to build a DSS with stochastic definition of empirical parameters. In 
this work, the parameters ,  and  are statistically defined, while the other ones are taken fixed. 
Nonetheless, many complications can be added inside the model. The distributions of  and  are defined 
according to Virkler’s data (Virkler et al., 1978), keeping constant the coefficient of variation . The 
uncertainty of  is extrapolated by a simple analysis of the uncertainty of the  at  noticed 
by Holper et al., (2003) and directly applied to  at . Virkler has reported and  as normally 
distributed. Whereas Beretta and Villa (2008) demonstrate the correlation between  and the couple 
of parameters  can be neglected without loss in prediction performance. Hence the vector parameter 
assumes the form  with  according to NASGRO 
software, and covariance matrix expressed in Eq (16) (still observing Virkler’s data). The noise  is 
defined as a log-Normal variable  since the crack length can only increase over time (so  is 
normally distributed). According to the definition of the noise in the section 3, the expected value of the 
crack length has to be equal to the value of the deterministic equation; with this mandatory 
recommendation, the expected value and the variance of the variable  have to observe the relation in 
Eq (17). The mean and the variance of  are set equal to -0.25 and 0.5, respectively. The measurement 
system is simulated with an uncertainty of  on the real crack length, while the measures are 
provided to the algorithm every 2000 load cycles. 

(16) 

(17) 

4.1 Results 
The algorithm starts with 1.8 mm crack length and it stops when the crack reaches 70 mm. The simulated 
crack is built with a couple of parameters arbitrary chosen inside the parameter bivariate PDF (

). It is purposely chosen different from the average parameters (
) to underline the performance of the algorithm. This case refers to resampling under the 

threshold (effective particles less than 60 % of the total ones). Figure 1 shows the difference between the 
prediction of the state evolution of Standard PF (cases (a) and (c)) with respect to the Particle Filter with 
SDSS (cases (b) and (d)). It is clear the SDSS produces an enlargement of the possible evolution of the 
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crack length because of the adoption of stochastic parameters. The performances about the conditioned 
PDF  are the same for the two techniques because the defined noise  is enough to account for 
all the possible values  between two different time step and . Then, the definition of the noise is 
very important to avoid markedly imprecisions about the state estimation. The expected value of the RUL 
is almost the same with the two different algorithms, as visible in Figure 2. This correspondence of the 
average RUL with deterministic and Stochastic DSS is due to the estimation of the system state , similar 
for both DSS models. So the only advantage of the SDSS is to account for the parameter uncertainties 
describing the phenomenon. Figure 2 emphasizes this particular consideration based on the RUL graph. 
As a matter of fact, the PF with SDSS includes the target RUL inside its -band in almost all the PF 
operation. It hardly ever happens in the standard PF. 

Figure 1: Comparison of the PF algorithm with standard DSS (a,c) and Stochastic DSS (b,d). The wider σ-
band of the SDSS is clearly visible after 10 measures (b) and after 50 measures (d) 

5. Conclusions 
A methodology for Stochastic DSS modelling aimed at Bayesian Filtering has been proposed here. This 
technique slightly improves the prediction performance of the algorithm with an enlargement of the failure 
PDF caused by a wider range of possible crack trajectories. The methodology can be expanded to other 
problems, provided that the Hypothesis of Markov Processes is observed and the parameter uncertainties 
of a particular phenomenon are known. Additionally, this method can be very useful for lifetime evaluation 
of real components subjected to crack propagation, Giglio and Manes (2006 for crack propagation on 
aluminium nomex panel, 2008 for fatigue crack propagation on helicopter panel, and 2011 for fatigue crack 
propagation after ballistic damage), Colombo et al. (2007) and Viganò et al. (2012) for crack propagation 
on helicopter components. Moreover, it can be inserted inside advanced maintenance framework such as 
Condition Based Maintenance (CBM) or Predictive Maintenance (PM). In point of fact, markedly gaps 
between real crack growths with respect to the simulations are possible (Sbarufatti et al., 2012) and in a 
real-time maintenance perspective, all the possible trajectories of the crack evolution have to accounted 
for. For example, this method can be put inside On-line Structural Health Monitoring systems for 
aeronautical structures (Sbarufatti et al., 2012). A very interesting improvement of this methodology is the 
possibility to update the parameter PDFs according to the measurements  in time in order to reduce the 
prior uncertainty and centre the DSS model on the real (observed) evolution of the damage. 
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Figure 2: RUL evolution (grey line) of the simulated propagation and related estimation of PF (black lines)
in the standard DSS case (a) and in the Stochastic DSS case (b) 
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