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With advances in condition monitoring (CM) technologies, the joint decision-making paradigm for spare 
parts ordering as well as condition-based replacement with prognostic information has become a 
challenging but appealing issue in the systems health management field. To the best of our knowledge, 
few papers have focused on the joint decision for critical component spare parts ordering and replacement 
with prognostic information. In this paper we present an integrated decision model for jointly determining 
the condition-based replacement and critical component spare parts ordering decisions for a functioning 
component subject to condition monitoring. To do this, the degradation path of the component is modelled 
using a Wiener process, and the parameters are updated through the combination of the Bayesian method 
and the expectation maximization (EM) algorithm using real-time CM data. The probability density function 
(PDF) and cumulative density function (CDF) of the remaining useful life (RUL) are derived, which are then 
utilized to update the integrated decisions. The main advantage in our proposed decision-making model is 
that the prognostic information is fully utilized for joint decisions. An additional advantage lies in the 
updating mechanism of the RUL which enables the integrated decisions to be updated based on in-situ 
sensor data. The proposed integrated decision model is validated by a numerical example. 

1. Introduction  
The maintenance management strategy for engineering systems is one of the main elements in 
prognostics and systems health management (PHM) practice. During the past decades, various 
maintenance methodologies were proposed and applied by the researchers and practitioners, which can 
be roughly divided into corrective maintenance and preventive maintenance. Corrective maintenance is 
applied only after failures. Preventive maintenance can be further classified as time-based maintenance 
and condition-based maintenance. It is the maintenance that occurs before systems failure in order to 
maintain devices in a specified status. Among these studies, most maintenance related literature dealt with 
the maintenance issue under the following two assumptions (Horenbeek, 2012): 1) the amount of the 
available spare parts is infinite; 2) the spare parts can be acquired without any leading time. Unfortunately, 
these two assumptions cannot be always satisfied in practice and may lead to wrong conclusions. 
In order to relax these assumptions in maintenance practice, the joint maintenance and inventory 
optimization issues have drawn more and more attention. The traditional joint decision methods are based 
on the time-based maintenance policies (Armstrong and Atkins, 1996). The failure time distributions used 
in these models are inferred from the statistical analysis of the failure time characteristics of component 
populations in an offline manner. However, the failure data is often hard to obtain, especially along with the 
increase of product reliability. On the other hand, this type of method does not consider the time-varying 
operational condition of specific individual components, and the failure distributions keep unchanged as for 
the integrated decision of an individual component. Fortunately, a large amount of sensory information can 
be available for the monitored components due to the recent advances in the sensory technology. If these 
CM data are properly collected and organized, they can be used to predict the health state of a functioning 
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device, and further, the integrated maintenance and inventory policies can be implemented in real time. 
For this reason, the condition-based order-replacement strategies have received considerable attention in 
recent years. For a single-unit system, Wang et al (2008) proposed a condition-based maintenance and 
spare parts provisioning approach for a single-unit system with gradual deterioration. However, they 
assumed that the degradation increments are nonnegative which limited its application scope. Elwany and 
Gebraeel (2008) also presented a sensory-driven prognostic model for single-unit system replacement and 
spare parts inventory, they modelled the degradation signal of a certain component as a continuous 
stochastic process, and the stochastic parameters were updated online based on the Bayesian paradigm. 
However, the diffusion coefficient σ  and the prior distributions of the stochastic parameter λ  in their 
degradation models have to be chosen by the history data of the other analogous units, and once these 
parameters are estimated, they are fixed without adjusting adaptively along with the dynamic observed CM 
data. Thus, the PDFs and CDFs which are then used in the joint decision models are not accurate enough. 
In this paper, we introduce a new condition-based order-replacement modelling method for a single-unit 
system with a room to store only one spare part. It is worth noting that the prognostic information is 
provided on the basis of a degradation path-dependent approach by employing the Wiener process model 
with deterministic and stochastic parameters. Further, all of the parameters in the degradation models are 
estimated only relying on the online CM information of a specific component without resorting to the history 
data of other components. Thus, more precise lifetime distributions can be obtained than the existing 
studies. Correspondingly, this leads to more reasonable replacement and inventory provisioning results. 
The reminder of this paper is organized as follows. Section 2 presents the degradation modelling 
framework and RUL estimation mechanism. In section 3, the condition-based order-replacement policy is 
given. A numerical example is provided in Section 4. Section 5 concludes this paper. 

2. Degradation modelling and RUL estimation 

Let ( )X t  denotes the degradation at t , then a Wiener process-based degradation can be represented as 

( ) ( )X t t B tσ= +λ , (1)

where λ  is the drift coefficient σ  is the diffusion coefficient and ( )B t  is the standard Brownian motion 

(BM) with ( ) ~ (0, )B t N t  representing the stochastic dynamics of the degradation process. In this paper, 

we further assume (0) 0X = , and λ  is stochastic with 2,Ν μ σ∼ ( )λ λλ  that represents the unit-to-unit 
variability. These assumptions are widely used in degradation modelling literature (Si et al, 2013a). 
For a specific functioning unit, we denote its RUL at kt  as kL  with its realization of kl . The following 
equation can be easily deduced from Eq. (1) 

( ) ( ), for 0k k k k kY l x l W l lσ= + + ≥λ , (2) 

where ( ) ( )k k kY l X l t= + , kx  is the degradation at kt ( ) ( ) ( )k k k kW l B l t B t= + − .

Based on the concept of FHT, the RUL at kt  can be defined as 

inf{ : ( ) }k k kL l Y l w= ≥ , (3)

where w  represents the pre-set threshold of the degradation process. 
From Eq. (3), the PDF and CDF of the RUL at kt  conditional on λ  can be formulated respectively as 
follows, 

3 2 2
| ( | ) [( ) ( 2 )] exp{ ( ) (2 )}

kL k k k k k kf l w x l w x l lσ π σ= − − − −λ λ λ , (4) 

2
| ( | ) 1 [( ) ( )] exp{[2 ( )] } {[ ( ) ] ( )}

kL k k k k k k k kF l w x l l w x w x l lσ σ σ= − Φ − − + − Φ − − −λ λ λ λ λ , (5) 

where ( )Φ  denotes the CDF of the standard normal distribution. 

Considering the random effects of the stochastic parameter λ , the PDF and CDF of the RUL at kt  can be 

formulated by the law of total probability using |( ) ( | ) ( )
k kL k L kf l f l p d= λ λ λ λ  and 
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|( ) ( | ) ( )
k kL k L kF l F l p d= λ λ λ λ . From Eqs. (4) and (5), after some algebraic operations, the unconditional 

PDF and CDF of the RUL at kt  are shown as 

3 2 2 2 2 2
, , ,( ) [( ) 2 ( )] exp{[ ( ) ] [2 ( )]}

kL k k k k k k k k k k k k kf l w x l l w x l l lπ σ σ μ σ σ= − + ⋅ − − − +λ λ λ , (6) 

2 2 2 2 2 2 4
, , , ,

2 2 2 2 2 2
, , ,

( ) 1 [( ) ] exp{[2 ( )] [2 ( ) ] }

{ [2 ( ) ( )] ( )}
kL k k k k k k k k k k k k k k

k k k k k k k k k k k k

F l w x l l l w x w x

w x l l w x l l

μ σ σ μ σ σ σ

σ σ μ σ σ σ

= − Φ − − + + − + −

Φ − − + + − +

λ λ λ λ

λ λ λ

, (7) 

where kσ  is the updated value of the diffusion coefficient at kt , ,kμλ  and 2
,kσ λ  are the mean and variance 

of stochastic parameter λ  at kt , respectively. 

We have now obtained the analytical form of the PDF and CDF of the RUL at kt , however, the parameters 
in these distributions should be estimated from observed data. In Gebraeel et al (2005) and Elwany and 
Gebraeel (2008), only the stochastic parameter λ  is updated when a new CM data is available. In this 
paper, we adopt the approach proposed in Si et al (2013b), in which not only the stochastic parameter λ
is updated but also the diffusion coefficient σ  and the hyper-parameters in the prior distributions of the 
stochastic parameter are updated in real time. 
(i) The updating of the stochastic parameter λ  via a Bayesian mechanism 
Given 2

0 0Ν μ σ∼ ( , )λ , the posterior distribution of the stochastic parameter λ  at kt  is normal with the 
following parameters: 

2 2 2 2
, 0, 1 0, 1 0, 1 1

2 2 2 2 2
, 1 0, 1 0, 1 1

( ) / ( )

( )
k k k k k k k k

k k k k k k

x t

t

μ μ σ σ σ σ

σ σ σ σ σ
− − − −

− − − −

= + +

= +
λ

λ

. (8) 

(ii) The updating of the diffusion coefficient σ  and the hyper-parameters in the prior distributions 
of the stochastic parameter λ   by the EM algorithm 
From Eq. (8), the hyper-parameters in the prior distributions of the stochastic parameter λ , i.e. 0, 1kμ −  and 

2
0, 1kσ − , and the diffusion coefficient 1kσ −  should be known before employing the Bayesian rule at kt . In this 

paper, these parameters are updated on the basis of 1 1 2 1{ , , , }k kx x x− −=X  in an iterative manner, where 

1k −X  represent all of the observations up to time 1kt − .We denote the prior values of the hyper-parameters 

and the diffusion coefficient before kt  as 2 2
1 0, 1 0, 1 1[ , , ]k k k kμ σ σ− − − −=ϒ . The EM algorithm is employed to 

estimate 1k −ϒ  due to the random effects and unobservability of the stochastic parameter λ . Based on all 

the observations 1k −X  till time 1kt − , the log-likelihood function can be written as 

1
11 1 1 1 1 1

2 2 2 2 2 21
11 1 1 1 1 0, 1 0, 1 0, 1

ln ( , | ) ln ( | , ) ln ( ) ( ln 2 ) 2 [ ln( )] 2

[( 1) ln ] 2 {[ ( )] [2 ( )]} [ln ] 2 ( ) (2 )

k
jk k k k k j j

k
jk j j j j k j j k k k

f f f k t t

k x x t t t t

π

σ σ σ μ σ

−
=− − − − − −

−
=− − − − − − − −

= + | = − − −

− − − − − − − − − −

X Xλ λ λ

λ λ

ϒ ϒ ϒ

(9)

In order to evaluate 1k −ϒ  in Eq. (9), the EM algorithm is utilized in the following two steps. 
Step 1 E-step 
Let ( ) ( ) 2 ( ) 2 ( )

1 0, 1 0, 1 1
ˆ ˆ ˆ ˆ[ , , ]i i i i

k k k kμ σ σ− − − −=ϒ  denote the estimates in the thi  step, the expectation of 

1 1ln ( , | )k kf − −X λ ϒ  can be formulated as follows, 

( )
1

21
1ˆ 1 1 1 1|

2 2 2 2 21
1 1 , 1 1 1 1 , 1 , 1 1 1

2 2 2
0, 1 , 1 , 1

[ln ( , | )] ( ln 2 ) 2 [ ln( )] 2 [( 1) ln ] 2

{[( ) 2 ( )( ) ( ) ( )] [2 ( )]}

[ln ] 2 (

i
k

k
jk k j j k

k
j j j k j j j j j j k k k j j

k k k

E f k t t k

x x t t x x t t t t

π σ

μ μ σ σ

σ μ σ

−

−
=− − − −

−
= − − − − − − − − −

− − −

= − − − − −

− − − − − + − + −

− − +

λ

λ λ λ

λ λ

λ
ϒ

ϒX

2 2
, 1 0, 1 0, 1 0, 12 ) (2 )k k k kμ μ μ σ− − − −− +λ

, (10) 
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where , 1kμ −λ  and 2
, 1kσ −λ  are the estimates from Eq. (8) based on 1 1 2 1{ , , , }k kx x x− −=X .

Step 2 M-step 
Let ( )

1
ˆ 1|

{ } 0i
k

kE
−

−∂ ∂ =λ ϒ
ϒ  in Eq. (10), we can compute ( 1)

1
ˆ i

k
+

−ϒ  as follows, 

( 1)
0, 1 , 1

2 ( 1) 2
0, 1 , 1

ˆ i
k k

i
k k

μ μ

σ σ

+
− −

+
− −

=

=
λ

λ

, (11)

2 2 2 2
1 , 1 1 1 1 , 1 , 12 ( 1) 1

11
1

( ) 2 ( )( ) ( ) ( )1
1

j j k j j j j j j k ki k
jk

j j

x x t t x x t t
k t t

μ μ σ
σ − − − − − − −+ −

=−
−

− − − − + − +
=

− −
λ λ λ . (12) 

Based on the iterative computations of the E-step and M-step, a series of ( )
1

ˆ i
k −ϒ  ( 1, 2,i = ) can be 

obtained. The iterations are usually terminated when the difference between ( 1)
1

ˆ i
k

+
−ϒ  and ( )

1
ˆ i

k −ϒ  is 

smaller than a pre-defined threshold. Thus, the optimal estimates * ( )
1 1

ˆ ˆ i
k k− −=ϒ ϒ .

3. The condition-based replacement and spare provisioning policy 
In this paper, we consider a single-unit critical component with a room to store only one spare part. 
Moreover, we assume the CM data can be obtained for free and the leading time is fixed. The condition-
based replacement and spare provisioning method used in this paper is developed from the maintenance 
and spare parts inventory policies in (Elwany and Gebraeel, 2008). In this decision-making framework, the 
replacement time is confirmed firstly, and then the optimal ordering time is computed. According to the 
renewal theory, the long-run replacement cost and inventory cost per unit time can be formulated by Eqs. 
(13) and (14), respectively. 

0
( ) [ ( ) Pr( )] { ( )[1 Pr( )] ( ) }

k
r k

k
k

t tk k k k k
r r p f p k r k k r k k r k k L k kl

C t c c c L t t t t t L t t l f l dl
−

=
= + − < − + − − < − + , (13) 

where 
0

Pr( ) ( )k

k

t t

k k L k kL t t f l dl
−

< − =  and ( )
kL kf l  can be obtained from Eq. (6), k

rt  is the decision 

variable representing the planned replacement time at kt , pc  is the planned replacement cost, fc  is the 

failure replacement cost. After we obtain the optimal replacement time *k
rt , the expected long-run 

inventory cost per unit time can be computed sequentially as follows 
* *

0
( ) { ( ) [1 ( )] } { ( ) [1 ( )] }

k k k k
o r o r

k k kk k k k
o o o

t L t t L tk k
o o s L k k h L k k k L k k L k kt t L t

C t k F l dl k F l dl t F l dl F l dl
+ +

+
= + − + + − , (14) 

where ( )
kL kF l  can be obtained from Eq. (7), k

ot  is the decision variable representing the inventory 

ordering time at time kt , sk  is the shortage cost per unit time, hk  is the holding cost per unit time, and L
is the fixed leading time elapsed from the moment of placing the order up till order arrival. Moreover, the 
optimal inventory ordering time *k

ot  at any CM point should satisfy the constraint * *k k
o rt L t+ ≤ .

4. Numerical example 
In order to show the adaptive nature of our presented degradation modelling method, we use a nonlinear 

process ( ) ( )b
s sX t t B tσ= +λ  to generate the simulated degradation data. By the Euler discretization 

methodology, the simulated degradation process can be further transformed as (( 1) )X k t+ Δ =
1( ) ( )b

s sX k t b k t Y tλ σ−Δ + Δ + Δ , where tΔ  is the discretization step and ~ (0,1)Y N . Here, the 

parameters are set as follows sλ = 0.1 , 1.5b = , 0.2sσ = , and 0.1tΔ = . One particular simulated 
degradation trajectory and the predicted one by our developed degradation modelling method are shown 
in Figure 1. After simulation, 120 suits of data are obtained with the final point (11.9) 4.5520X = . Given 

the failure threshold 4.5600w = , the FHT of this degradation path can be approximated as 12.0. Note that 
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the first data point (0)X  is set to be zero according to the model setting. The initial parameters are 

chosen arbitrarily as follows: 2 24, 0.8, 0.5μ σ σ= = =λ λ . For comparison, we set the true parameters with 
the same values as that in the linear degradation model in (Elwany and Gebraeel, 2008). As shown in 
Figure 1, the projected path of our presented degradation modelling method tracks the actual degradation 
path well. This validates the predictability of our presented degradation modelling method. 
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Figure 1: The simulated and projected 
degradation paths 

Figure 2: The expected replacement cost per 
unit time by Elwany’s approach at 10.5kt =

For simplicity, we just choose 10.5kt =  as an example to show the feasibility and effectiveness of our 
proposed joint decision policy. Note that the other sampling points can be chosen for illustration too. 
Moreover, comparison works are done between our proposed method and the method used in (Elwany 
and Gebraeel, 2008). The related parameters are set as follows: 1000fc = ; 100, 200, 300, 400pc = ;

3000 / unit timesk = ; 0.1/ unit timehk = , 0.3L = . It is worth pointing out that we fix the failure 

replacement cost 1000fc =  and let the planned replacement cost pc  vary from 100 to 400 for a more 

comprehensive validation. 
The average long-run replacement costs per unit time of the Elwany’s approach and our proposed 
approach are illustrated in Figure 2 and Figure 3, respectively. From Figure 2, using the Elwany’s 
approach, the replacement times are 10.6, 10.6, 10.6, and 10.7 when pc  varies from 100 to 400.  It can be 

seen from Figure 3, the optimal replacement times are different when we choose varied planned 
replacement cost based on our proposed approach, however, the cost curves are evolving in a similar 
trend. Specifically, the corresponding replacement times are 11.5, 11.6, 11.7, and 11.9 when pc  varies 

from 100 to 400. As mentioned above, the FHT of this simulated degradation path is approximately to be 
12.0 in this example. Compared with Elwany’s approach, our approach gains more reasonable results 
since the replacement times obtained by Elwany’s are too early. As mentioned previously, the prognostic 
information is typically important to the condition-based replacement and spare provisioning procedure. 
However, the diffusion coefficient σ  and the prior distribution of the stochastic parameter λ  rely on the 
history data heavily in Elwany’s approach, and once they are estimated, they are fixed. This leads to an 
imprecise prognostic result for a critical component. If we adopt Elwany’s approach in this numerical 
example, the spare part should be ordered immediately at 10.5kt = , and it is too early according to the 
estimated FHT. If our approach is applied, the illustration of the long-run inventory cost per unit time is 
shown in Figure 4. Different lines mean that the evolutions of inventory cost are different along with the 
varying of the planned replacement cost pc . However, the optimal ordering times are all at 11.0. As is pre-

set in this simulation, the shortage cost per unit time is much higher than the holding cost per unit time. 
This is consistent with the situation in practice for these critical components. 
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Figure 3: The expected replacement cost per unit 
time by our approach at 10.5kt =

Figure 4: The expected inventory cost per unit 
time by our approach at 10.5kt =

To sum up, the following conclusions can be drawn from this numerical example. Firstly, our presented 
condition-based replacement and spare provisioning approach can realize the optimization of replacement 
time and ordering time in a real time manner. Secondly, our presented joint decision approach gains more 
reasonable results than the existing approach in literature. 

5. Conclusion 
In this paper, we study the joint decision issue of condition-based replacement and inventory management 
for critical components. Firstly, a new degradation modelling method is introduced, which is independent of 
the information of the other components. Then, the prognostic information of one specific component is 
utilized to optimize the replacement time online, in turn, the optimal ordering time is confirmed sequentially. 
Compared with the joint decision approach in existing literature, the condition-based replacement and 
spare provisioning approach gains more reasonable results with more updated prognostic information. 
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