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Rolling element bearings are of great importance in industrial applications as well as in critical applications 
in transport. Signal processing techniques can enhance the ability of bearings condition monitoring to 
identify faults during operation. In this work, state of the art signal denoising techniques are applied for 
condition monitoring of roller bearings. In particular wavelet denoising with NeighBlock threshold technique 
is applied in vibration waveforms. A standard data base for lifelong operation of roller bearings is used for 
the tests. The condition monitoring efficiency of a statistical feature is assessed taking into account both 
raw and denoised bearing vibration signals. A brief assessment shows that such a signal denoising 
technique can evidently improve the remaining useful life estimation as well as the change point detection 
of the structural health of the asset. 

1. Introduction 
Maintenance strategies for rotating machinery are generally shifting from preventive maintenance to 
Condition Based Maintenance (CBM). CBM techniques have gained significant interest in academic 
literature. On the contrary, CBM techniques are not equally widespread outside academia. Industry and air 
transport are still reluctant to incorporating new and possibly costly CBM systems. The fact is, however, 
that an appropriate CBM system, when applied to –a preferably large or critical- mechanical asset can 
substantially lower the maintenance cost, compared to traditional methods as stated by Byington and 
Garga (2001). Rolling element bearing failures are very common in industry. As stated by Ocak and 
Loparo (2005) the most common failure of an induction motor is bearing failure, followed by stator winding 
failures and rotor bar failures. CBM is generally based in monitoring of a statistical feature derived from 
vibration recordings on the bearing case. The feature is useful as long as i) it correlates well to any sudden 
change in the structural integrity of the mechanical asset or ii) it has monotonic trend and therefore can be 
utilised for remaining useful life estimation of the asset. This statistical feature can very frequently exhibit 
irregular patterns that cannot correlate well with any gradual or sudden structural degradation. These 
patterns may be attributed to temperature fluctuations of the lubricant or various forms of bearing structural 
degradation that suddenly arise and smooth out with the long term operation of the machine. This work is 
dedicated in improving diagnostics and remaining useful life estimation applying an advanced wavelet 
denoising technique on classical CBM statistical features. In section 2 the wavelet denoising with 
Neighbouring blocks technique is presented. In section 3 the effect of this technique is explored on data 
derived from a bearing wear data base (Nectoux et al. 2012). In section 4 the results are discussed and in 
section 5 few conclusions are drawn and summarised. 

2. Wavelet Denoising 
Suppose we need to extract an unknown signal f from a noisy dataserie s(ti) 
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2.1 Thresholding with neighbouring blocks method 
Cai and Silverman (1998) has proposed an interesting threshold method. In that method the shrinkage 
factor at Eq. (3) is not applied at each coefficient at each level. On the contrary it is applied in a group of 
successive coefficients and the threshold is calculated within adjacent blocks of coefficients. The method 
resembles a sliding window that calculates a threshold value within a neighbourhood and applies this 
threshold in the central block of this neighbourhood of coefficients. More analytically 

1) Perform DWT of Eq. (2) with a certain wavelet basis and number of levels of decomposition 
in order to acquire the wavelet coefficients 

2) At each level of decomposition, group the wavelet coefficients into disjoint blocks bi,j of length

0 (loL  block is extended by an amount of 
1 0mLg ) / 2n . Each ax(1, / 2 )L p

L

oints in each 

direction to form overlapping blocks Bi,j of length 
0 1L L 2 . 

3) Within each block indexed i at level j, bi,j , estimate the coefficients via the shrinkage rule of 
Eq. (3). The shrinkage factor i,j is chosen with reference to the coefficients of the larger 
block Bi,j 

2 2
, max(0,(1 / ))i j L S                                                                                                (5) 

Where k=1,2.., L1 is the index of each data point within the bigger block Bi,j, 

 ,

2
,

( , ) i j

j k
j k B

S and 2 is the variance of the extended block and =4.5053.  

The latter method is shown to outperform other older threshold criteria such as Rigsure, NisuShrink and 
others (Cai and Silverman 2000). 

3. Case Study: lifelong bearing data 
The problem with rolling element bearing data is that due to the industrial maintenance policies bearings 
are usually replaced well before critical break down, thus the scarcity of real life lifelong bearing data. 
Several lifelong bearing data bases that are acquired from experimental test rigs can be accessed through 
internet. These have been used within the academia to test Remaining Useful Life (RUL) as well as 
diagnostic methods and models. The most recent known to the authors is the data base of PRONOSTIA 
(Nectoux et al. 2012). The data comprise of several lifelong bearing test histories with varying load and 
rotating frequencies. Vibration data are recorded from two axes once every 10 s. The vibration waveform 
sampling rate is 25,6 Khz and each waveform is 0.1 s long (2.560 samples per vibration ASCII file). Each 
tested bearing is considered broken when the vibration signal amplitude overpasses 20g. 

3.1 Statistical feature extraction 
The most common way to apply and assess diagnosis and RUL strategies is through statistical feature 
extraction and monitoring. Such features may be derived from time domain (rms, kurtosis, crest factor..) 
frequency domain (kurtosis, skewness, frequency with maximum amplitude), wavelet domain (rms or some 
other statistic of a particular wavelet resolution band) and others can be found in literature. The best 
feature for RUL estimation is the one that correlates well with the gradual degradation of the roller bearing 
under consideration and it should be monotonic. Diagnosis on the other hand is based on picking the 
change point in the operation of the mechanical asset. The better the correlation of a feature change point 
with the actual structural deterioration change point, the better. Figure 2 depicts extracted vibration 
waveform rms plotted against the time evolution of each experiment. Such a variable is frequently used for 
RUL and diagnostic purposes. However there variables contain significant trends and change points that 
can neither correlate with actual health status or with a gradual degradation mechanism. Take for instance 
Figure 2a and b, where few regions have been marked. These regions possibly correspond to different 
physical processes. Region 1 coincides with the beginning of the experiment and exhibits a sudden 
(Figure 2a) or gradual change (Figure 2b) in trend. This trend can most certainly be attributed to change in 
lubricating oil temperature or smoothing out of the virgin groove of the rolling bearing. In any case this run-
in period differs from experiment to experiment (as is evident in Figures 2a, b) and can affect the training 
efficiency of an expert system. Moreover, other mechanisms that can possibly be attributed to slight 
bearing faults, which are not “fatal” but disappear with the course of the experiment, can have their toll on 
the CBM feature trend. Region 2, as noted in the figure, probably depicts a slight fault in the bearing that 
appears and disappears, contaminating the trend of the CBM feature and obscuring the on-line change 
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coefficient , 0< <1 where ‘1’ implies identity and ‘0’ implies irrelevance (to be more precise, absolute 
correlation coefficient zero means that one of the two components of the comparison is white noise). In 
Table 1 several cases are taken into account. Case 1 is derived from raw waveform data, case 2, 3, 4 and 
5 are the cases concerning denoising with one, two, three and four levels of decomposition. 

  

Figure 3a, b: The extracted features after the wavelet denoising performed on the original vibration 
recordings compared to Figures 2a, b respectively 

The best similarity measure is succeeded with the three levels of decomposition as shown in Table 1. 
Thus the best RUL estimation feature is derived from case 3 scenario. The same case is applied to every 
lifelong bearing history under consideration. 

  

a) b) 

Figure 4a, b: The extracted feature after the wavelet denoising performed on the original vibration 
recordings, compared to Figure 2c and 2d respectively. 

Table 1:  Selecting the depth of the DWT decomposition.  

 Case 1 Case 2 Case 3 Case 4 Case 5 
Correlation coefficient 0.6813 0.6784 0.7123 0.7506 0.7402 

4. Discussion 

Figure 3a and b shows the extracted rms value from the wavelet denoised vibration signals. First of all, the 
irregular run-in-period trend at the beginning of each experiment has largely been eliminated. The picture 
is much clearer concerning the improvement from Figure 2b to Figure 3b where the final health status 
change point is completely distinguishable from the rest of the experiment. The only issue seems to be 
several outliers that exist especially in Figure 3a. This seems to be no big issue, since an additional on-
line, feature-level pre-processing (Roulias et al. (2012)) can eliminate these irregularities. In Figure 2d the 
trend is very irregular and bath tub shaped. Comparing Figure 2c and d with Figures 4a and 4b makes it 
clear that wavelet denoising improves the robustness of CBM. On the other hand, Figure 4b shows an 
improved picture compared to Figure 2d. An almost monotonic trend is now distinguishable. It is evident 
that RUL estimation can be improved and become more robust taking as input this feature. The latter 
statement can be sustained also by Table 1 and noting the increase in correlation from Case 1 to Case 4.  
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This sshort procedurre can be summmarized in thee following flow chart (Figurre 5). 

 

Figuree 5: The propoosed feature eextraction scheeme 
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