
A publication of 

CCHHEEMMIICCAALL EENNGGIINNEEEERRIINNGG TTRRAANNSSAACCTTIIOONNSS

VOL. 33, 2013
The Italian Association 

of Chemical Engineering 
Online at: www.aidic.it/cet

Guest Editors: Enrico Zio, Piero Baraldi 
Copyright © 2013, AIDIC Servizi S.r.l., 
ISBN 978-88-95608-24-2; ISSN 1974-9791 

Transients Analysis of a Nuclear Power Plant Component 
for Fault Diagnosis 

Piero Baraldia, Francesco Di Maioa, Marco Rigamontia, Enrico Zioa,b, Redouane 
Seraouic
a Energy Department, Politecnico di Milano, Via Ponzio 34/3, 20133 Milan, Italy 
b Chair on Systems Science and the Energetic Challenge, Ecole Centrale Paris and Supelec, France 
c EDF-R&D\STEP Simulation et Traitement de l’ information pour l’ exploitation des systèmes de production, 6 quai    
Watier, Chatou Cedex, France  
piero.baraldi@polimi.it 

We analyze signal data collected during 148 shut-down transients of a nuclear power plant (NPP) turbine 
for fault diagnosis. The aim is to identify groups of transients with similar characteristics, under the 
conjecture that faults and malfunctioning of the same type lead to a similar behavior of the measured 
signal transients. The fault diagnosis method is based on the combined use of an original fuzzy-based 
slope and similarity analysis with spectral clustering.  

1. Introduction 

Fault diagnosis can be seen as a classification problem in which specific classes of fault are associated to 
specific values of measured signals (Zio et al., 2006). In general terms, fault diagnosis methods can be 
divided into two categories: model-based and data-driven (Venkatasubramian et al., 2003, Sheng et al., 
2004). Model-based methods need expert specific domain knowledge for model building while not 
guaranteeing the timely detection of faults (Tian et al., 2007), whereas data driven methods can satisfy a 
number of practical requirements, such as short calculation time and high accuracy (Zio, 2012; Baraldi, 
2012a). We develop a new data driven method for identifying specific signal transient behaviors 
associated to different types of fault. A first task to be done is the extraction of signal features relevant for 
the transients classification. Several techniques of feature extraction can be used, such as pointwise 
difference (Baraldi et al., 2012b), correlation (Guyon et al., 2003), Principal Component Analysis (PCA) 
(Baraldi et al., 2010). Problems may arise when dealing with misaligned signals (Secchi et al., 2008), i.e., 
amplified and/or delayed transients data. To overcome this, we develop an effective feature extraction 
technique for misaligned data, which we call Fuzzy-based slope analysis. For the clustering, we then 
propose to compute the similarity between signal trajectories by measuring the fuzzy similarity of the 
extracted features (Zio et al., 2010). A similarity graph (von Luxburg, 2007) is built, in which each vertex 
represents a trajectory and the weight associated to the edge connecting two vertices is the value of 
(fuzzy) similarity between the two corresponding trajectories. Spectral clustering is finally applied in order 
to find an optimal partition of the graph (von Luxburg, 2007). The developed framework of analysis has 
been tested on a real industrial case regarding the shut-down transients of a turbine of a NPP. 
The rest of the paper is organized as follows: Section 2 states the problem and describes the available 
NPP turbine data; in Section 3 the proposed framework of analysis is described in details along with the 
application to the case study; in Section 4 the obtained results are shown and discussed in detail; finally, in 
Section 5, some conclusions and remarks are drawn. 

2. NPP turbine shut-down transients 
We consider the measured values of 70 signals taken at T=4500 time steps with a fixed sampling 
frequency during N=148 NPP turbine shut-down transients. The generic i-th transient, i=1,...,148, can be 
seen as a multidimensional trajectory into the 70-dimensional signal space, and represented by the matrix 
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of values iX   whose component i
lkx   represents the value of signal k taken at time tl. For fault diagnosis, 

we want to partition the 148 multidimensional trajectories into an a priori unknown number of clusters, C,
each one containing trajectories of similar functional behavior, with the assumption that they have been 
originated by the same physical setting (nominal or faulty).  

2.1 Data pre-treatment: reduction of the dimensionality of the signals space 
Each i-th transient entails a very large amount of data (4500 simultaneous measurements of 70 signals) 
that challenge the identification of similarities between the transients in a signal space characterized by 
such a high dimensionality (Baraldi et al., 2012d). To overcome this problem, we have calculated the 
correlation among the signals and retained those with large correlation values, i.e., containing relevant 
information for clustering the transients. A spectral clustering algorithm applied to a correlation matrix of 
size [70, 70] has allowed identifying six groups of signals characterized by a high degree of correlation 
among them and a low degree with the signals of other groups. The largest group is composed by 27 
signals and includes the active power signal, two vibration signals and twenty four temperature signals. 
For limitation of paper length, the analyses described in Sections 3 and 4 will take into account only this 
group of signals. 

3. The framework for unsupervised clustering  
In this Section, we introduce the basic method for fault diagnosis developed and applied to the shut-down 
transients of NPP turbines. In Section 3.1, the  fuzzy-based slope analysis feature extraction technique is 
applied to the raw signal data; Section 3.2 describes the calculation of the fuzzy-similarity measure 
between transients represented by the extracted features; finally, Section 3.3 describes the application of 
the spectral clustering method to the obtained similarity matrix. 

3.1 Feature extraction: Fuzzy-based slope analysis 
The developed feature extraction technique is properly devised to overcome problems of misaligned 
transients. It consists of five steps, applied separately to each k-th signal, k=1,...,27: 

1. Signal slope computation: divide the i-th transient of the k-th signal in R=9 intervals of length        
L= T/R=4500/9=500. The number of intervals has been found by trial-and-error. For each r-th
interval, r=1,..,9, the slope i

k
r Δ  of the signal is computed using the least squares regression 

method on the signal values in the considered interval (Frank, 1987). 

2. Signal slope distribution: collect the slope values of the k-th signal in all the 148 transients and 
build separately the signal slope empirical distributions for the positive and the negative values. 

3. Percentiles computation: calculate the 1st and the 50th  percentiles of the negative slopes 
distribution  (N1 and N50), and the 50th and the 99th percentiles of the positive slopes distribution 
(P50 and P99).

4. Fuzzy sets and membership functions creation: consider the signal slope, Δ , as a linguistic 
variable that can be approximated within a fuzzy framework defined by the fuzzy sets (terms) high 
negative, low negative, low positive and high positive. In this case, the membership functions 
μ  which define the fuzzy sets are S=5 asymmetric, unevenly spaced triangular functions centered 
on the percentile values computed at step (3) and on the zero value (V0): we chose asymmetric, 
unevenly spaced triangular fuzzy sets, based on the computed percentiles values, because they 
only depend on the distribution of the available signal slope values, and allow to describe the 
signals slope behavior better than symmetric triangular fuzzy sets, which are centered on a priori 
established values and may lead to the creation of empty fuzzy sets (Baldwin et al., 2003).  

Once the membership functions have been defined, each computed signal slope can be characterized by 
its degrees of membership to the fuzzy sets which represent the level to which the slope verifies the extent 
properties of the set, as shown in Figure 2. 

5. Feature extraction: for each i-th transient compute the mean membership 
i

ks μ of the k-th signal to 
each of the s fuzzy sets:
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In this way, since five different membership values are obtained for each signal, the matrix iX  of size 

[4500, 27] describing a transient is transformed into a vector iY  of size [135] which constitutes the new 
representation of trajectory i, as shown in Figure 1. 

Figure 1: Sketch of the proposed technique for the fuzzy-based slope analysis for the feature extraction 

3.2 Pattern matching by fuzzy-similarity  
The similarity between transients i and j can be computed by considering the corresponding vectors of 

extracted features iY and jY . To this aim, a fuzzy similarity measure is considered to determine the 
degree of closeness of the two trajectories with reference to the pointwise difference between the 
corresponding feature values (Zio et al., 2010; Baraldi et al., 2012b). Without loss of generality, let us 

define the pointwise difference ijδ  between the trajectories iY  and jY :
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The pointwise difference of the two trajectories is then evaluated with reference to an “approximately zero” 
fuzzy set (FS) specified by a function which maps ijδ  into a value ijμ  of membership to the condition of 

“approximately zero”: values of ijμ  close to 0 indicate that the signal evolutions in the two transients i and j

are very different, whereas values close to 1 indicate high similarity. 
In this work, the following bell-shaped function is used: 
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The arbitrary parameter  can be set by the analyst to shape the desired interpretation of similarity into the 
fuzzy set: the larger the value of , the narrower the fuzzy set and the stronger the definition of similarity 
(Zio et al., 2010). Applying eq. (2) and eq. (3) with an optimized value of the bell-shaped function 

parameter σ = 0.55, we have built the similarity matrix W of size [148,148], whose values represent the 
functional similarity between transients.  

3.3 Transient clustering by spectral clustering 
From the matrix W  of size [148,148] a similarity graph G = (V,E) is constructed, where each vertex vi

represents the i-th trajectory and the weight associated to the edge pij connecting the two vertices i and j is 
the similarity value μij (Alpert et al., 1999). The original problem of identifying groups of similar trajectories 
can then be reformulated as that of finding a partition of the similarity graph such that the edges 
connecting elements of different groups have small weights and the edges connecting elements within a 
group have large weights. Figure 3 shows the 148 eigenvalues of the Random walk Laplacian matrix 

rwL obtained by applying the spectral analysis method to matrix W (Baraldi et al., 2012b). Since the first 
four eigenvalues are closer to zero and the gap between the fourth and the fifth is larger, the number of 
clusters C is set equal to 4, according to the eigengap theory (von Luxburg, 2007).  

The relevant information to be used for partitioning the graph (i.e., clustering the transients) consists into 
the eigenvectors 4,2,1 ..., uuu  associated to the 4 smallest eigenvalues (Baraldi et al., 2013). The problem 
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of clustering the 148 trajectories iX  is now reduced to the problem of finding four clusters among the 148 

4-dimensional vectors, where for each i-th transient { }iiii
uuuu 421 ,...,,=  constitutes a reduced representation 

of iX . The Fuzzy C-Means (FCM) clustering algorithm fed with 
i

u  provides the memberships icμ  of the i-

th transient  to the   c-th cluster, c=1,2,3,4 (Baraldi et al., 2012c). The transient with the largest value of 
membership to a cluster is named prototypical trajectory, and its functional behavior can be taken as most 
characteristic of the cluster. 

Figure 2: Membership functions of the linguistic 
variable slope 
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Figure 3: The 148 eigenvalues of  Lrw 

4.  Clustering Results 
With respect to the matrix of values icμ , two categories of transients have been distinguished: 
- Transients assigned to a cluster with high confidence (the largest membership value is larger than 0.7) 

are hereafter labelled “assigned”. 
- Transients not assigned to any cluster with enough confidence are hereafter labelled “not assigned”. 
As an example, Figure 4 shows the evolution of the signal 3 in the “assigned” transients of the four 
identified clusters. Clusters 1 and 4 mainly differ in the rate of decrease of the signals: those belonging to 
cluster 1 are characterized by a sharper, less smooth decrease than those of cluster 4. Although the 
distinction between these two groups depends on the rate of decrease of the signals, their functional 
behaviour is almost the same. Furthermore, it is possible to note that, even if the distinction between the 
more characteristic transients belonging to cluster 1 and cluster 4 is clearly marked, there are several 
transients at the border between the two clusters for which the signal behavior seems to be very similar. 
On the contrary, clusters 2 and 3 show peculiar functional behaviors which allow distinguishing them from 
other transients: those belonging to cluster 2 exhibit a smooth rise followed by a decrease of the signal, 
whereas those belonging to cluster 3 show a short and more marked decrease followed by a rise. 
The  low degrees of membership of the “not assigned” transients can be due to two different causes: 
- the “border-line” transients could belong to more than one cluster, i.e., being at the border of two 

clusters they share some characteristics with both. 
- The “outliers” transients are very different to those of the four identified clusters, i.e. their signal 

behaviours are not similar to those of the transients of any of the identified clusters. 
In order to identify if the “not assigned” transients are “border-line” or “outliers”, we have used an auto-
associative method, previously developed in the context of fault detection (Baraldi et al., 2012d). The idea 
is to develop an auto-associative model using a training set formed by the patterns of the “assigned” 
transient (Figure 5). When the “not assigned” transients are fed to the developed auto-associative model 
AAKR (Baraldi et al., 2012d) two cases may arise: the signal reconstructions (output of the AAKR model) 
are similar to the signal behaviour of the “not assigned” transient (input to the AAKR model) or they are 
different. In the former case, we can conclude that the “not assigned” transient is similar to those used for 
the model training, i.e. the transients of the four clusters, and, thus, the transient is at the border of two 
clusters. Contrarily, in case of remarkable difference between the reconstruction and the “not assigned” 
transient, we can conclude that the transient is atypical with respect to the training transients and, thus, it 
is an outlier characterized by anomalous signal behaviors. According to this analysis, 6 out of the 15 
transients are “outliers”, whereas the remaining 9 transients are “border-line”. 
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Figure 4: Evolutions of the signal 3 in the transients assigned to the four clusters 
 

Figure 5: Sketch of the proposed fault detection auto-associative method 

The majority of the border-line transients belongs to cluster 4: they show a rate of the decreasing part of 
the signal which cannot be univocally defined as “sharp” or “smooth”. Figures 6 (left) shows signals 3, 24 
and 32 for a “border-line” transient (dashed line) and compare it with the evolution of the signals in the 
prototypical transients of clusters 1 and 4. Notice that the signal evolution of the “border-line” transient is in 
the middle of the signal evolution of the prototypical transients. Figure 6 (right) shows the signal behaviors 
in the “outlier” transient 100. Notice that the difference between the functional behavior of the signals in 
this transient and in the prototypical transient of the most similar cluster is remarkable. 
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Figure 6; Left: evolution of signals 3, 24 and 32 in transient 106 and in the prototypical transients of 
clusters 1 and 4. Right: evolution of signals 11, 13 and 17 in transient 100 and in the prototypical transient 
of cluster 1
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5. Conclusions 
In this work, we have developed a framework of unsupervised classification of transients for identifying 
different behaviours associated to different faults. We have preceded the clustering task with a feature 
extraction capable of treating misaligned data. The proposed fuzzy-based slope analysis for feature 
extraction is able to capture functional shapes in case of misaligned transients and seems to be a general 
and reliable technique. We have then computed the similarity between the trajectories by considering the 
fuzzy similarity of the extracted features, obtaining a squared similarity matrix. The transients clustering is 
then obtained by the application of the spectral analysis and the following FCM algorithm to the similarity 
matrix. The application of the proposed framework to a real industrial case study concerning 148 shut-
down transients of a NPP turbine has demonstrated the feasibility of the approach. Four different groups of 
transients have been identified: two groups mainly differ for the rate of decrease of signals correlated to 
the turbine speed, whereas the other two groups are characterized by transients with anomalous 
behaviors of some signals, which should be analyzed by NPPs experts to understand whether they are 
associated to malfunctioning, faults or peculiar working conditions. The applied methodology has also 
identified the presence of 6 atypical transients (outliers) which have not been associated to any group with 
enough confidence, which can be considered also as a symptom of malfunctionings or faults. 
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