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Literature review indicates that a large amount of failures are caused by abnormal wear of the diesel 
engine components. It is therefore essential to monitor the engine condition using the tribological 
information. Although the wear debris analysis has been proven to be effective for condition monitoring 
and fault diagnosis (CMFD) of diesel engines, limited work has been done to address the remote on-line 
CMFD system in practice. To extend the oil monitoring technology into industrial application level, a new 
remote on-line fault diagnosis system for marine diesel engines has been proposed in this paper. The new 
system consists of an on-line tribological signal acquisition model in the ship, a remote feature extraction 
model and a fault diagnosis model in the laboratory center. Nine wear characteristics were extracted to 
detect the engine faults, including the surface roughness of wear particles, oil moisture and viscosity, and 
index of particle covered area (IPCA), etc. In order to select a relative best feature for the on-line fault 
detection, the interaction information based feature selection method was employed to determine the 
suitable indicator. This study has found that the IPCA is the best feature among other eight features to on-
line respond the engine condition changes. The diagnosis results show that the new system offers 
satisfactory on-line fault diagnosis ability and is effective for the diesel engine fault diagnosis in practice. 

1. Introduction 
The operation reliability and safety is the most crucial issue for ships. However, due to harsh working 
environment, ship components are prone to damages and a crack in the hull or a fracture of the bent axle 
in the internal-combustion engine may cause serious accidents. The report of the Swedish Club Highlights 
on the main engine damage claims demonstrated that during 1998 to 2004 a total 482, 994, 204 dollars 
had been compensated for 1238 claims of ship damages. Table 1 shows the claim numbers and costs of 
the seven categories. This high incidence and cost of ship machinery damage should be reduced by 
proper damage prevention programme. 
According to Swedish Club Highlights, the most frequent failure components are the main engine and 
auxiliary engine. It can be noticed that the claim numbers of the main engine and auxiliary engine account 
for 64% of the machinery claims. Another survey (Yan and Sun, 2003) indicated the faults caused by 
friction and wear account for 50% of the faults in marine diesel engines. Considering the diesel engine has 
been served in more than 90% of vessels (Lamaris and Hountalas, 2010), it is therefore crucial to monitor 
the condition of marine diesel engines from point of view of tribology to prevent malfunctions of machinery. 
The oil monitoring technology has been proven to be efficient in tribological failure detection (Jones and Li, 
2000; Yan, et al., 2005; Peng, et al., 2005; Peng and Kessissoglou, 2003; Yuan et al., 2005; Zhou and Yan, 
2008). The use of the wear debris monitors and oil sample analysis can reveal the wear characteristics 
associated with the operation states of a diesel engine (Ozogan, Khalil and Katsoulakos, 1989). However, 
traditional off-line laboratory oil analysis delays the decision making and hence its application in practice is 
limited (Lunt, 2011). With an increasing demand for real-time execution of oil analysis, the on-line oil 
monitoring sensors and detection systems attract great interest of both academic and industrial 
researchers(Markova et al., 2010; Kauffman and Ameye, 2002; Mohammadi et al., 2010; Villaret al., 2010; 
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Wu et al., 2009; Yan et al., 2011). Therefore, for practice use the outcomes of the on-line oil monitoring 
and fault diagnosis system should be evaluated in marine diesel engines. 

Table 1. The claim numbers and costs of the seven categories [2]. 

Claims type Number Proportion of claim number Total cost (USD) Proportion of claim cost 
Heavy weather 83 6.70% 25.040.827 5.18% 
Contact 172 13.89% 41.037.341 8.50% 
Collision 130 10.50% 129.829.551 26.88% 
Grounding 133 10.74% 58.028.719 12.01% 
Fire/Explosion 24 1.94% 36.932.101 7.65% 
Machinery 558 42.07% 151.134.439 31.29% 
Other 138 11.15% 40.991.227 8.49% 
Total 1238 100% 482.994.204 100% 

 

 
Figure 1: The sketch diagram of the proposed fault diagnosis for marine diesel engines. 

This paper presents a new development of remote on-line fault diagnosis system for a series of real ships. 
It consists of a condition monitoring subsystem in the ship and a fault diagnosis subsystem in laboratory 
centre. The 3rd generation telecommunication (3G/B3G) wireless communication system has been used 
to connect the two subsystems. A microscopic image processing technique based on-line ferrographic 
monitor is adopted to analyze the wear debris characteristics of the engine oil, and an on-line moisture and 
viscosity detection sensor is used to monitor the lubricant condition. A feature selection method based on 
the Shannon mutual information is followed to rank the oil features.  

2. Description of proposed remote on-line fault diagnosis system 

2.1 Signal perception and fault feature extraction 
The sketch diagram of the proposed fault diagnosis for marine diesel engines is shown in Figure 1. Two 
on-line sensors have been employed in the present diagnosis system. One is the on-line ferrographic 
sensor (Wu, Mao, Wang, Wu and Xie, 2009). The other is the on-line oil moisture and viscosity detection 
device (Yan, Sun, Yin, Li and Liu, 2011). The on-line ferrographic sensor uses the image processing 
technology to calculate the index of particle covered area (IPCA) and hence to count the numbers of the 
large wear particles (Wu, Mao, Wang, Wu and Xie, 2009), and the moisture and viscosity detection is 
realized by the use of the linear relationship between the oil moisture content and the color saturation. 
To simplify the wear debris analysis, a remote knowledge service subsystem is developed to calculate the 
roughness and size of the wear particles. This subsystem has integrate a series of signal processing 
functions and provides remote image processing services for wear debris using the web service technique 
(Liu and Yan, 2010). The sensors firstly send the wear images to the wear debris subsystem by 3G/B3G. 

2.2 Feature selection 
After the feature extraction, the wear particle numbers and size, roughness, IPCA, oil moisture and 
viscosity, etc. are sent to the fault diagnosis subsystem for potential failure detection. Generally, these 
features are useful for the fault diagnosis of diesel engines. However, aiming to a fast respond to failures, 
it is crucial for the fault diagnosis subsystem to use one or two most informative features to monitor the 
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machinery condition. For this purpose, the interaction information based feature selection criterion (Brown 
et al., 2012) is adopted to automatically identify the most meaningful features of the extracted variables in 
this work. The interaction information is a generalization of Shannon’s mutual information to the case 
where multivariate (more than two variables) mutual information can be solved. The dependencies among 
multiple variables can be described as (Brown et al., 2012) 

1 1 1 1 1({ , ..., }) ({ , ..., } ) ({ , ..., })m m m mI X X I X X X I X X− −  =   −   ,      (1) 

where, function denotes the interaction information among all variables, the term denotes the conditional 
mutual information and m denotes the numbers of total variables. If m = 2, then the interaction information 
reduces to Shannon’s mutual information: 

1 2 1 2({ , } ) ( ; )I X X I X X =   ,          (2) 

where, function denotes the Shannon’s mutual information. 
As for the feature selection issue, the information gain of each feature reflects its relevance or/and 
redundancy degree with regard to the class labels. Given a set of features and a target T, the interaction 
information based feature selection criterion can be expressed as (Brown, Pocock, Zhao and Luján, 2012) 
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It can be seen that the information gain of feature Fm is determined by its own mutual information, the 
correlations terms between itself and other features, and its class-conditional probability terms. This means 
that the most informative feature is a balance between these components (Brown et al., 2012): the 
relevance of the feature to the target, redundancy of the feature to its rivals, and class-conditional 
redundancy. More details about the interaction information based feature selection criterion can be found 
in Brown et al. (2012). 

3. Experiments and results 
In the experiment tests, the diesel engine has run for 100 hours. The on-line ferrographic sensor and oil 
moisture and viscosity detection device sampled the lubricant oil every 2 hours, and the lubricant oil was 
collected every 12 hours for the purpose of off-line oil analysis. A slight crack was seeded on a gear pump 
of the tested diesel engine. During the engine operation, the crack developed and broke down the gear 
pump in the late stage of the experiment. 

3.1 Interaction information based feature selection 
50 samples were collected from three stages of the diesel engine operation: the early testing stage where 
the engine could be regarded as working in normal condition, the middle stage where engine was in slight 
faulty condition, and the late stage where the gear pump was broken down. The contribution of each 
feature to the target is listed in table 2. 
The relevance gain of the IPCA is 0.350, the largest value among the nine features. This tells us that the 
IPCA is most sensitive to the change of the engine operation state. Meanwhile, the viscosity shares the 
second most informative feature. Its relevance gain is 0.244, i.e. the second largest value, whilst its 
redundancy and conditional redundancy are equal to the values of the IPCA. This is mainly because that 
the crack has reduced the boundary lubrication of the gears and increased the metal-to-metal contact, and 
hence the metal wear particles have increased significantly. As a result, the oil viscosity has changed with 
the severity of the gear wear and reflected the operation state of the engine. On the other hand, the oil 
viscosity has used the variation of wear particles to assess the engine health condition. This is an indirect 
manner. However, the IPCA is a direct measurement on the change of the wear particles. So, the IPCA 
has been selected as the prior choice to detect engine faults in the remote on-line diagnosis system.  

3.2 On-line fault diagnosis 
Figure 2 shows the ferrographic images of the diesel engine using the on-line ferrographic sensor. The on-
line IPCA monitoring results is shown in Figure 3. One can note that in Figure 2 the numbers and area of 
large wear particles increase gradually with the severity of the engine fault. Obvious large wear particles 
appear around 45 testing hours, and severe heavy-worn particles emerge during 65 to 100 testing hours. 
Meanwhile, it can be seen in Figure 3 that in the early stage of the testing the IPCA value maintains at a 
relative low lever while after 40 testing hours it increase rapidly. The average IPCA value is 367 from 50 to 
100 testing hours and the maximum IPCA value reaches up to 450. These IPCA values are much larger 
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than a normal value of 50. As a result, the abnormal operation state of the diesel engine has been 
detected effectively using the IPCA. 

Table 2. The feature selection results. 

   Features 
Terms 

Number Area Diameter Perimeter Roughness IPCA Moisture 
Wear 
type 

Viscosity 

Relevance 0.043 0.0669 0.074 0.076 0.205 0.350 0.185 0.189 0.244 
Redundancy 0.293 0.123 0.276 0.195 0.312 0.168 0.378 0.391 0.168 
Conditional 
redundancy 

0.198 0.082 0.161 0.104 0.146 0.087 0.157 0.163 0.087 

 

   
(a) 2 testing hours (c) 20 testing hours (e) 65 testing hours 

   
(b) 10 testing hours (d) 45 testing hours (f) 85 testing hours 

Figure 2: The ferrographic images of the diesel engine at different testing time. 
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Figure 3: The curve of the index of particle covered area (IPCA). 
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Figure 4: The curves of the other features: (a) roughness, and (b) viscosity. 

To compare the IPCA with other features, the variations of the surface roughness of large wear particles 
and the oil viscosity are given in Figure 4. It can be seen in Figure 4(a) that the order of magnitude of the 
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roughness is too small and the roughness values in abnormal engine operation condition are close to the 
values in normal condition. Although the roughness in severe faulty condition is larger than that in the 
slight wear condition, it is still difficult to assess the engine health condition according to the roughness 
values via the on-line manner. In Figure 4(b), the viscosity curve is similar to the IPCA curve. It can be 
used to detect the engine fault on-line. However, some singular points may influence the viscosity value 
significantly, such as the points at 22 and 24 testing hours. This is because the viscosity reflects the wear 
particle changes to certain degree but other factors may also influence the viscosity variation, such as the 
oil temperature, etc. In contrast, the IPCA has no such problems and hence is superior to the viscosity in 
the on-line fault detection. This point of view is also proven by the feature selection results in table 2. 

3.3 Discussion 
Nine typical features have been extracted by the oil analysis, but not all of them are suitable to be 
incorporated into the developed diagnosis system. The on-line fault detection performance may vary with 
the sensitiveness of the features to the changes of the machinery health conditions. It can be seen that the 
correlation of the IPCA to the engine health conditions in Figure 2 agrees well with the ferrographic images 
in Figure 3. The initial crack of the gear pump influence little on the lubricant performance of the diesel 
engine. However, this situation boosts into reverse after 45 testing hours. The IPCA rises up to as large as 
450, which warns us that the engine encounters unexpected damages. Hence, the gradually grown crack 
has broken down the gear pump and a large amount of metal wear particles have been generated. In 
order to detail this failure mechanism and explain the fault detection mechanism of the IPCA, the filtergram 
technique was used to analyze the oil samples in an off-line way. A total of 100 filtergram samples were 
obtained to record the wear progress of the diesel engine from the start of the test to the end. Figure 5(a~d) 
shows a portion of the filtergrams covering the development experience of the engine health conditions.  
 

    
(a) 12 testing hours (b) 24 testing hours (c) 48 testing hours (d) 72 testing hours 

Figure 5: The filtergrams of the lubrication oil samples 

In Figure 5(a), when the engine was in early stage of the test, a small amount of wear debris was 
generated. The wear of the engine was normal because only a few rubbing particles (<0.1 m in size) 
were observed. The size and amount of rubbing particles increased slightly in Figure 5(b) after another 12 
testing hours. This means the engine working condition has become terrible. Nevertheless, the wear 
particle type suggested that the wear of the engine was basically normal. However, the health condition of 
the engine changed in Figure 5(c~d). Large laminar particles (approximately 3 m in length) appeared. 
The severity of the crack failure grew enough to destroy the lubrication boundary of the gear pump, leading 
to direct contact between the gears. One can be noticed in Figure 5(d) that a large amount of chunky and 
fatigue particles were generated. These particles are good indicators of lubrication breakdown. 
Compared with Figure 5, the IPCA curve in Figure 3 is concordant to the wear progress of the diesel 
engine. During the period of 40 to 50 testing hours, the IPCA curve changes greatly from normal to 
abnormal whilst the wear type and size in Figure 5 have similar changes. It is evident that with the 
development of the gear crack the number of the chunky and fatigue particles increases correspondingly.  
From the above analyses, it can be concluded that the metal-to-metal contact caused by the engine fault 
has generated informative wear particles. By the use of interaction information based feature selection, the 
most suitable indicator (the IPCA) has been selected to be incorporated into the remote on-line fault 
diagnosis for marine diesel engines. Satisfactory fault detection performance has been achieved. 

4. Conclusions 
Any failures in the diesel engines would badly threaten the safety of ships. For this purpose, a new remote 
on-line diagnosis system has been developed in this work for industrial application of CMFD of marine 
diesel engines. The constructed remote on-line diagnosis system takes the advantages of tribological 
information to implement the fault detection procedure. Experiments carried out in the “Changjing 2” 
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dredger show that the newly developed remote on-line fault diagnosis system is competent for fault 
detection. Hence, the new system is feasible in engineering practice, and efficient for failure detection for 
marine diesel engines. 
Future research is planned to further investigate the intelligent fault diagnosis and decision-making 
subsystem in the laboratory center. Multi-dimensional sceneries, including the tribological information and 
vibration signals, will be integrated in the intelligent system. Industry application of this updated remote on-
line CMFD system will be explored not only for marine diesel engines but also other machineries in the 
marine power system. 
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