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As part of optimizing the reliability, Thales Optronics now includes systems that examine the state of its 
equipment. This function is performed by HUMS (Health & Usage Monitoring System). The aim is to 
implement in the HUMS a program based on observations that can determine the state of the system and 
propose a maintenance action before failures. So we decompose our problem into two steps: the first step 
is to detect the degraded state (which announces future failure) using an informative variable and hidden 
Markov chains. This step was developped in Baysse et al. (2012). The second is to propose an optimal 
and dynamic maintenance policy, adapted to the state of the system and taking into account both random 
failures and those related to the degradation phenomenon. We want to estimate the best time to perform 
maintenance: a maintenance performed too early may be unnecessarily costly and inconvenient for the 
client but too late may cause the occurrence of a failure that will damage the rest of the equipment and 
may be responsible for the failure of a mission. So it is necessary to find a balance between these two 
extreme maintenance policies. First, we model the state of the system by a piecewise-deterministic 
Markov process: PDMP introduced by Davis (1993). Often the evolution of the system is modeled by 
stochastic processes such as Markov jump process, semi-Markov process (Cocozza et al. (1997)). There 
are also tools for modeling such as Stochastic Petri networks (Marsan et al. 1995), dynamic Bayesian 
networks (Donat et al. 2010). However, the flexibility of modeling by PDMP allows to take into account the 
dynamic component degradation. The works of Lair et al. (2012) focuses on this topic, they use a finite 
volume scheme to evaluate the quantities of interest associated with PDMP. Even if there are different 
methods that optimize maintenance policy, few use optimal stopping. In this paper, we use this method 
whose principle is to maximize a performance function that takes into account operating time, maintenance 
costs, repairs and downtime. We use the numerical probability tools developed in de Saporta et al. (2012) 
in order to compute this conditioned-based time of maintenance. The integration of this method in the 
HUMS, will be soon implemented in specific optronic equipment by Thales. We present results of 
simulation in this case. The methodology can be extended to more complicated cases. 

1. Industrial context 
Thanks to the HUMS, each of the appliances has a logbook which provides information at each start-up 
such as: number of uses, cumulative operating time of appliance, “cool down time” (Tmf)… This Tmf is the 
transit time for the system from ambient temperature to a very low one. This temperature decrease is 
required to operate appliance and this is done on every boot. According to experts, a Tmf increase results 
from deterioration in the cooling system. According to this hypothesis, a careful observation of Tmf 
evolution allows us to determine the state of the cooling system. We suppose that the cooling system pass 
from stable state to degraded state and from degraded state to reach failure. In Baysse et al. (2012), we 
have given a mathematical method based on Hidden Markov Chain in order to detect a transition to a 
degraded state of the cooling system. There are two other kinds of possible failures: electronic failure and 
ball bearing failure. These two failures do not pass by a degraded state. So we study appliance with three 
failures (electronic, ball bearing and cooling system failure) and three states (stable, degraded on account 
of cooling system, failure).  
Our objective is to propose an optimal and dynamic maintenance policy adapted to the random state of the 
system. 
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2. Modeling 
In order to develop a maintenance policy that takes into account both random failures and those related to 
a degradation phenomenon, we model the state of the system by a piecewise-deterministic Markov 
process. This modeling makes possible the transition from the stable state to failure directly (random case) 
or through the degraded state (damage to the cooling system (see Figure 1). 
The notion of PDMP was introduced by Davis (1993). PDMP are processes with deterministic evolution, 
punctuated by random jumps and changes of regimes that can allow them to pass from one state to 
another. PDMP are hybrid process generally noted . The first component is a discrete 
variable with values in a finite or countable space M. It describes the state of the system at time t (system 
in stable mode, degraded, failure ...). The second component  evolves in a continuous way in  
and describes evolution of the system in the mode   by its physical variables (for example pressure, age 
of system..).
Our study is about equipment with three states: stable state ( ), degraded state( ) and failure 
( ). 
At the beginning equipment is in stable state and then it breakdowns or it goes in degraded state: 

- If it breakdowns directly, it is due to an electronic failure or a failure about ball bearing. Failure 
rates are respectively  and  (t). 

- If it goes from stable state to a degraded state, it is due to a deterioration of the cooling system.  
The occurrence rate of this deterioration is noted . In the degraded state, it is possible to have 
electronic, ball bearing or cooling system failures (rate ).

Equipment in degraded state or in failure cannot return in stable state. Note that the state “failure” is 
absorbant and so the number of jump is less than or equal to 2. Figure 1 illustrates how the system works. 
According to experts, the rate   depends on the age t of equipment contrary to other rates. Note that  
is not markovian because rate  depends on t. Thanks to our method to detect transition from state 1 to 
state 2, (see Baysse & al (2012)), we suppose that the jump of the process is observed.
 
 
 
 
 
                                                        +                                   
 
 
 
 
 
 
                                                                              +  +  
 

Figure 1 : Modeling system 

In order to use the powerful framework of Markov process, we must add time t to the process  as 
information such that  is markovian. Indeed it is a PDMP. So the PDMP considered 
here describes the state of equipment and its age: . Its motion is described by the three 
characteristics (see Davis (1993)): 

- the flow  (m,t ;s) = (m,t+s), 
- the rate of jump  ( ) =  +  +  +  + ) , 
- the measure of transition: 

 Q (  ,t ; {e} ×{t}) = .                                 (1)

We denote , . The state of the system just after the first transition is  and 
 if  occurs. We put  and the interjumping times. With these 

notations, the discrete process )= )  associated with the PDMP  is a Markov 
chain and it is considered for n={0,1,2}.
The horizon  of the study is finite. So that the remaining time is t* .
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3. Optimal and dynamic maintenance policy 
We consider the problem as an optimal stopping problem for PDMP, whose principle is to maximize a 
performance function that takes into account operating time, maintenance costs, repairs and downtime. 
We want to estimate the best time to perform maintenance in order to allow Thales to manage upstream 
park equipment. Recent work has been done on this subject. De Saporta et al. (2012) give the theoretical 
foundations of the method that we use in this study. In de Saporta et al. (2010), a method of computation 
of best time to perform maintenance on a complex dynamic system is implemented and analyzed. 

3.1 Principle of optimal stopping time 
Our aim is to find a stopping time  which maximizes expectation of a performance function at random 
stopping time  that is  [g( )] where g is the function of system performance and  a stopping 
time adapted to the filtration of the PDMP. This problem is typically an optimal stopping problem which 
consists in solving the following optimization problem: 
 

 

with  
(2) 

Function  is called the value function of the problem and represents the maximum performance that can 
be achieved. Operator L is defined by 

. It is a complex operator that depends on the characteristics of the PDMP. However, we can 
see that it depends on the PDMP only through the underlying Markov chain . In our case, we chose the 

performance function g( )= .  Here this function favours a long time of use but is 

canceled if the system fails. In practice, the optimal stopping time does not necessarily exist. However, we 
can always find time to stop that approach the optimal performance as near as you want. 

3.2 Numerical method of optimal stopping 
We apply methodology developed in de Saporta et al. (2010).
To approximate the ε-optimal stopping time  we introduce a sequence of random variables  
such as . This allows to replace the recurrence (2) which covers functions by a recurrence on 
random variables easier to treat numerically. To approximate the values of this sequence, we proceed in 
two steps. First, we discretize the process on a regular time grid noted G(  associated with interval 
[0, , in order to obtain a discrete time Markov chain. Thus the operator L is maximized on a finite 
number of points and not on a continuous time interval. This new discretized operator is noted . The 
second step is the quantization that transforms the continuous random variables  into a discrete random 
variable . Quantization provides a finite set of points (a grid) adapted to the law of the process and not 
arbitrary regular basis on the state space. Details of this method are given by Pagès et al. (2003). It is 
based on simulations of the Markov chain . So we denote =( ) projection of  
on the quantization grid . After these two steps, the operator L is approximated by operators  for 

.
Now we can build a sequence of variables (  which approaches ( ). To do this, we first consider the 
following process: 

                                 (3) 

 

with .      (4) 

Where  is the event 
The approximation of  is performed by  for  It is shown in de Saporta et al. (2010) 
that the error of approximation of the value function | | can be made arbitrarily small by a suitable 
choice of discretization parameters). A stopping time arbitrarily close to the optimal is also provided.
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Figure 2: Schematic representation of the algorithm  

4.  Applications 
A general presentation of the algorithm used to perform the maintenance policy is given in Figure 2. From 
the value of T and failure rates , , provided by experts, we built a simulator of the trajectories 
of the process. For each of them, we have the following information: the time  spent in the stable state, 
the type of jump ( =2 or 3) and the time spent in the new state if . From this simulation, we have 
created the quantization grid using an algorithm given in Pagès et al. (2003). All of these elements will 
allow us to calculate  and  of each cell and the times ,  which maximize them. Note that  is 
deterministic and  depends on the cell. So for each cell of the quantization grid we can associate a time 
nearly optimal. Let us remark that the result of this algorithm only depends on T and the failure rates and it 
is compute once and for all. 
It will suffice to project data of equipment chosen on the new grid to propose stopping time that will be 
associated. 
In the practice, maintenance policy is the following:  

- at the beginning, a maintenance date is announced at a fixed date  for all equipment, 
- if an appliance goes in degraded state to the time  before the date fixed , maintenance time 

is recalculated and replaced by a new time . The time   is given by the optimal stopping time 
associated to the cell of  (the projection of  on the grid).  

To illustrate this point, we choose to look at the history of 10 appliances. In parallel we launched the 
algorithm to build the downtime for each device. Examples of results are presented in Table 1. 

Table 1: Results of simulations 

Equipment (n°) 1 2 3 4 5 6 7 8 9 10 

 6899 3766 6802 2238 7090 3432 4162 3800 4212 2579 

 2 2 3 2 3 3 2 2 2 2 

 if 6981 3834 - 2598 - - 4309 3885 4393 2627 

Maintenance date 5160 3827 5160 2508 5160 3432 4192 3860 4242 2627 

We have three possible cases: 
- maintenance is at time  and before the first jump (ex n°1,3,5). We can remark that in cases 3 

and 5, the first jump would have resulted to a failure. 

                                              Optimal stopping algorithm: 
• Calculation of  and the maximizing time for each cell of the quantization grid, 
• Calculation of  and the maximizing time.

Quantization grid and downtime associated with each cell

Grid of quantification for ( , , )
and probability of each grid cell.

Simulated Data:
Stories of systems: states 

and time in each state 
( , ,  )
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- maintenance is between the first and second jump, when the system is in a degraded  
(cases n°2,4,7,8,9). Maintenance is also before failure. 

- maintenance is triggered by the failure of the system (cases n°6,10). Indeed, algorithm had 
planned to stop equipment n° 6 at time 5160 and n° 10 at around 2679 but these two appliances 
broke down before this date (that is why the stopping time equals downtime). In this case the 
performance achieved is zero. 

In this case  and if  occurs before failure, we clearly see that  depends on . 

5. Results 
Simulation studies allowed us to estimate the proportion of equipment in each state. We simulated 
100,000 stories. In Figure 3, we let the system evolve without performing maintenance. Then we obtain the 
following proportions: 

- 18 % of equipment have ball bearing failure, 
- 39 % of equipment have electronic failure, 
- 43 % of equipment go to degraded state.These equipment have subsequently a failure of the 

cooling system. In this case the performance equals to zero. 

Figure 3: Evolution of the system without maintenance 

Now we implement a maintenance policy. The results are given in Figure 4. At time t = 0, we have the first 
date of maintenance given by the previous algorithm. At this date, the situation is as follows : 

- 30 % of equipments have electronic failure before this date of maintenance,  
- 8 % of equipment have ball bearing failure before this date of maintenance, 
- 26 % of equipment go to degraded state before this date of maintenance, 
- 36 % of equipment are sent for maintenance at the time . 

At this moment, a new date is given for maintenance equipment passed in a degraded state. For those 
gone in this new state 5% fail before this new date of maintenance and 95% are sent for maintenance at 

this new date. In this case the average performance equals to 2249.

Figure 4: Evolution of the system with maintenance 
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So using this maintenance policy allows us to recall 61 % of equipment before failure. But if we do not take 
into account electronic failures, 87 % of equipment are sent for maintenance before failure. Indeed, we 
cannot perform maintenance on electronic parts, we can only replace it with a new piece. When electronic 
part of equipment fails, it will not damage the rest of equipment, to repair it is enough to replace as 
maintenance. So we do not make maintenance on electronic components. 

6. Conclusion 
Estimation of the state of the system associated with a decision criterion should allow to adapt 
maintenance policies to the observed state of the system, by the detection of failures predictable and a 
better management of park of equipment available.Thus, Thales will improve its maintenance action, its 
equipment availability at the lowest cost and the satisfaction of its customers. 
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