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Nowadays, the aerospace industry has to maintain and improve its global competitiveness and meet the 
demand of the new requirements which are constantly emerging. This need for improvement consists of 
two main issues that have to be considered: the reduction of economic costs and the technological 
advance. Both provide an additional value to the product. The aerospace industry, along with other 
industries, has found it necessary to develop more flexible and versatile systems, which are also 
economical, reliable and simple. The maintenance strategy is not stipulated in a clear and simple way and 
sometimes it requires Health Monitoring (HM) systems to allow monitors to determine the state of the 
systems for early detection of failures. Nevertheless, this technology is still in an early stage of 
development and more research is needed to demonstrate its feasibility. 
This article presents the development of a HM system for an electro-mechanical nose-landing gear door 
actuator of an Unmanned Aerial Vehicle (UAV), based on a combination of simulation modelling and data-
driven techniques. The aim of the work is to detect some failures at early stages so as to avoid a 
catastrophic fault that may cause serious damage to the UAV. The present work explains all the steps 
undertaken for a final HM system development: from the phase of data acquisition to that of the evaluation 
of the algorithms. This work is part of a Spanish national project in collaboration with the aeronautical 
systems company CESA, and it defines how to create a monitoring system from the actuator design stage. 
The main contribution of this system is to continuously measure the state and health of the actuator based 
on its internal frictions, the evolution along time of a ratio between the signal command and the 
measurement in every cycle of the effect produced by this command. The evolution of this ratio provides 
the opportunity to evaluate the loss of the performance on the actuator. 

1. Introduction 
Electromechanical actuators (EMA) aboard aircrafts have great potential to effectively contribute to the 
greening of air transportation. But the current EMA designs need to evolve in order to meet cost, reliability 
and weight requirements from the airframes. 
The EMA developed by CESA with 15 KN load capability is based on single direct drive architecture with 
an anti-jamming system located inside the screw which is able to disconnect the Landing Gear Door from 
the screw avoiding in this way, any possible mechanical single failure (even screw jamming) assuring the 
extension of the Main Landing Gear Door in any condition (see Figure 1). 
The innovation of this developed EMA is its capability to act just in the root cause of screw jamming by 
acting directly in the source of the problem, not previously implemented in any airborne actuator. Typical 
solutions used in the past by using clutches between Gear Boxes and screws did not solve the root cause 
of jamming problems because these kind of solutions avoid jamming events but only just before screws, 
not screw jamming itself. Other solutions used in the past were based on mechanical fuses used in case of 
jamming although most main disadvantage is the need to replace them. No training or actuation tests 
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could be performed with these kinds of systems. Innovation of the proposed solution would be unable until 
a failure or a degraded performance is detected internally by a clever Health Monitoring function 
implemented in ECU. It allows the auxiliary anti-jamming system to freely extend the Landing Gear Door 
by gravity or pushed by Landing Gear. If functional tests or training are required to assure the correct 
behaviour of this anti-jamming system, the proposed solution could be re-engaged easily after use by 
following an easy sequence. 

Figure 1: Antijamming system 

The objective of this work is to implement a Health Monitoring System for the EMNOLDGDA actuator. The 
monitoring system would be able to identify some faults of the system, which would be notified to the 
control unit which is responsible to execute the actions that it considers appropriate to prevent them in real 
time (i.e. the activation of the anti-jamming system). Monitoring information would be available to be used 
by the control unit to monitor the estate of the UAV in real time and it could be saved to its evaluation on 
the ground as shown in Wang (2012). It would allow to schedule for the maintenance of the UAV and 
make predictions about the future behaviour of the system. This work is focuses on the use of machine 
learning algorithms for the development of algorithms for early detection of some faults of the system. We 
have opted for the evaluation and the use of these algorithms due to their capacity to face nonlinear 
functions, which makes them suitable. They are already being implemented and integrated into 
Prognostics and Health Management (PHM) systems developed for some aeronautical applications, as 
shown in Ferreiro (2012) and are working to overcome unscheduled maintenance problems by integrating 
all the condition monitoring, health assessment and prognostics into an open and modular architecture and 
then further supporting the operator by adding intelligent decision support tools. 

2. HM approach based on Simulation modelling and Data-Driven techniques  
This work introduces the development of a HM system based on the monitoring and diagnostics of 
EMNOLGDA electro-mechanical actuator at full system level. Usually, the main barrier to achieve good 
algorithms that comprise the HM system is to obtain the data from which to establish patterns of the 
system behaviour and test theories. Early in the project in which this work was carried out, neither the 
actuator nor its test bench were completed or available, this is because they were still a design phase, 
thus making the real experimentation unfeasible. As a consequence, a model based on simulation 
modelling was developed, taking into account initial requirements and design specifications. This model 
has been updated as new specifications have been obtained, until the development of the final simulation 
model. This final model is able to fix the behaviour of the actuator by means of simulation techniques 
(Simulink model), which makes it possible to analyze, identify and select those signals to be utilized for the 
development of the state detection and prediction algorithms of the HM system of the actuator, and also to 
be monitored later in the real EMA system as input to these algorithms.  

2.1 ‘EMNOLGDA’ Simulation Modelling 
In order to model an electromechanical (EM) actuator, the physics to be considered have to be defined 
first. In this paper the dynamics mechanical behaviour of the actuator as well as the control and power 
signals governing the actuator have been considered. The model development platform is Simulink®. 
Figure 2 shows a block diagram of the actuator: the system block includes the mechanical behaviour of the 
actuator, the motor block is a simple representation of the actuator motor and converts current into actual 
torque/force applied to move the actuator, the control block computes current commands based on the 
set-point and the measured actuator position and velocities. Additional blocks have also been included to 
consider external forces (perturbations) and friction phenomena.  
A state-space representation has been used to define the machine mechanics. Prior to that, the mass and 
stiffness matrixes of the actuator are computed based on the characteristics of the different components 
(inertias, stiffnesses, screw pitch, gearboxes, etc.). Such matrixes can be analytically obtained for the 
considered degrees of freedom. Once the dynamic characteristics of the system are defined, a modal 
reduction is applied and the dominant vibration modes are concentrated in state-space form for the 
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simulation. The system is controlled through a conventional PI controller used in actuators, where nested 
position and velocity loops are used. The velocity loop includes a PI controller while the position loop 
comprises just a proportional gain. It is assumed the bandwidth of the current loop is much higher than the 
mechanical bandwidth or other control loops (position, velocity), so an ideal current loop is considered 
(transfer function equal to 1).  

Figure 2: Simulink model of EMA 

All signals within the model can be monitored for HM algorithm analysis and development purposes. 

2.2 Description of the Failure Modes 
The following failure modes have been considered so far in this work: friction induced failures, motor 
degradation, backlash and external perturbation effects. 
Friction is an external perturbation opposed to the actuator movement. A friction model has been 
implemented in the model in order to consider the implications of excessive friction. The friction model 
includes both static and dynamic regimes. In the static regime friction is proportional to the applied force 
up to a tuneable limit. When such a limit is surpassed, sliding movements between the contacting surfaces 
occur and the dynamic friction regime applies (Coulomb’s law based). Two friction set-ups corresponding 
to low and high speeds have been used. At low speeds, friction force reduces as speed increases so that 
a smooth transition occurs from stop to movement. This is the so-called Stribeck effect and it is related to 
the formation of a thin lubricant layer that separates the contacting surfaces. At high speeds, under 
lubricated conditions, an additional viscous friction term has been included, which implies a friction force 
increase with velocity.  
Lubrication and friction increase failures are related to various mechanical problems. By varying the friction 
coefficients within the model, the effect of such failures can be analyzed.  
Although the rest of non-linearities mentioned above (backlash, motor degradation and external 
perturbations) are not further explained in this section, they have also been implemented for the HM 
system.  

2.3 Experimental Setup 
The simulation model, explained in the previous two sections, reproduces the completed extension-wait-
retraction movement of the EMA in 6 seconds. The time is enough to capture the entire process because 
the speeds and lengths have been set in the simulation model, is this, necessary taking into account the 
specifications of the EMNOLGDA. According to the behaviour defined for the system and set into the 
Simulink model there are more phases in the movement: from tini to tini+1 (phase 1) the system 
accelerates to the maximum speed; from tini+1 to tini+2 (phase 2) the system moves to constant speed; 
from tini+2 to tini+3 (phase 3) the system decelerates reaching the stop approximation speed ‘vdamp’; 
from tini+3 to tini+4 (phase 4) the system moves to constant speed ‘vdamp’; and finally from tini+4 to tini+5 
(phase 5) the system decelerates until the system brakes completely. The extension process is then 
completed. Next, it remains stopped (waiting) ‘twait’ time and the process is repeated in the opposite 
direction (retraction process). 
The first task to be performed is to test the effect of the induction of each fault in the behaviour of the 
system and to determine the ranges of the observed differences in the signals with respect to their 
behaviour without fault. This allows us to check whether the required resolution for detecting such 
variations in the signals may be problematic or not for the final implementation. A straightforward initial 
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analysis has concluded that the accelerations (vibrations) and the current signals are those that are the 
most useful. Nevertheless, the acceleration signal was not available in the EMNOLGDA system and this 
would have to be calculated from the position signal, making it a noisy and not very useful signal for 
analysis. Moreover, to add accelerometers in the system is not a viable option and finally it was decided to 
study the current signal as an alternative signal to try to obtain the algorithms based on its information 
together with the use of data-driven techniques. 
Figure 3 shows the current signal, along the finished extension-wait-retraction movement, for the normal 
behaviour of the actuation system and when friction fault is injected, as well as the range of difference 
between them trough the signal.  

Figure 3: current signal and differences between normal behaviour and when there is friction 

In order to develop the Health Monitoring system for the electro-mechanical nose landing gear door 
actuator of the UAV, based on a combination of simulation modelling and data-driven techniques, datasets 
related to the actuator in the extension-retraction control system are required. These datasets include the 
data of actuator normally working during extension-retraction process.  
The simulation modelling has been performed in this work and different levels of fault according to the fault 
modes were added. In this way, the simulation data under different levels of fault can be accessed and 
collected, as well as normal behaviour data. Furthermore, the simulation model incorporates an additional 
noise which makes the model non-deterministic. According to the description of the faults for the system, 
ten patterns have been assigned respectively: the system working normally, friction 
(mild/moderate/severe), motor degradation (mild/moderate/severe) and backlash (mild/moderate/severe). 
The simulation tests have been performed for both normal and abnormal operating conditions, and several 
tests for each case have been collected in datasets.  However, the simulation has been carried out 
independently and there is no more than one fault injected at the same time.  
Next, the signal has been split into the 11 aforementioned phases (5 for the extension movement + 1 wait 
+ 5 for retraction movement) and a pre-signal processing has been performed, transforming them into a 
series of statistical variables (predictors) corresponding to the time domain signal, in order to subtract 
computation and processing time.  
In order to develop the final models for the early detection of these faults by supervised techniques it is 
necessary to classify or label the data (tests) collected during the simulation tests. The final datasets, one 
for each phase of the extension-retraction process, from which the learning process is performed by 
applying machine learning algorithms, consist of tests that include both the signal predictors and the type 
of fault that has been introduced (class or label). 

2.4 Experimental Results and Evaluation 
Afterwards, some algorithms based on machine learning techniques have been used. Machine learning as 
defined in Mitchell (1997) is a subfield of artificial intelligence and its aim is to develop algorithms that allow 
the machines to learn from data in order to develop programs which are able to induce models that 
improve their performance over the time from data. It is a knowledge induction process. The aim within this 
work is to acquire knowledge about the phases of the current signal that may contain information, from 
which the type of fault can be determined different degrees of severity in order to avoid a catastrophic 
failure in the EMA. Machine learning mixes mathematical elements with statistics and computational 
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sciences. The development of the present work has been performed using Weka software, which is a 
collection of machine learning algorithms written in Java and developed by the University of Waikato 
(Australia). Some of these algorithms have been utilized and tested with the datasets of the defined 
phases of position set-point of the EMA: based on probabilities (BayesNet, NaiveBayes), classification 
trees (J48, ID3), induction rules (JRip, Ridor), k-nearest neighbors (IB1, IB5), logistic regression (Logistic) 
and neural networks (MultilayerPerceptron). 
In the case of friction, mild friction is not detectable by the algorithms. They do not discern the variance 
among datasets in order to identify the differences between the normal behaviour and the injected fault. 
However, some of these algorithms obtain good results to predict moderate and severe friction. The best 
two approaches to predict moderate friction seems to be J48 and JRip. They provide an estimated 
success rate of 71.90 % and 71.10 % respectively when tested for the phase 2 dataset, although ID3 and 
BayesNet reach similar results too. Moreover, ID3 and BayesNet obtain the best performance to detect 
severe friction (see Table 1), their result being very close to 90 % of estimated success rate for the phase 
8 dataset. But there are other algorithms with similar estimated success rate, J48 and JRip. It must be 
highlighted that for both moderate and severe friction prediction, these algorithms (J48, JRip, ID3 and 
BayesNet) obtain valid results for the phase 2 and 8 datasets. 

Table 1:  Severe friction ( e) 

Algorithm 
Phase BayesNet NaiveBayes Logistic Multilayer Perceptron IB1 IB5 JRip Ridor J48 ID3
phase 1 50.00 39.60 28.30 25.90 05.40 05.30 50.00 48.70 50.00 50.00
phase 2 87.10 78.00 86.80 87.10 54.00 70.70 84.40 83.80 85.90 86.60
phase 3 50.00 41.20 22.90 28.20 06.20 05.10 50.00 48.90 50.00 50.00
phase 4 64.30 60.10 72.50 61.60 08.40 38.40 72.30 68.40 62.40 64.30
phase 5 50.00 29.80 21.60 28.80 05.20 05.30 49.40 48.30 50.00 50.00
phase 6 75.50 65.80 72.60 65.20 18.10 46.50 78.30 74.10 73.60 75.50
phase 7 50.56 25.97 22.76 26.43 07.53 07.02 49.36 48.72 50.56 50.56
phase 8 87.60 79.90 82.10 81.00 29.10 71.80 86.60 84.20 86.60 87.60
phase 9 50.00 37.50 20.70 28.70 06.00 06.00 49.30 47.10 50.00 50.00
phase 10 70.90 59.10 64.60 63.70 07.40 33.90 73.30 66.20 68.80 70.90
phase 11 50.00 45.10 20.30 27.90 05.90 06.00 50.00 48.60 50.00 50.00

The main conclusion is that the algorithms provide better results when they are tested in the datasets of 
the phases in which the movement takes place at constant speed: phases 2 and 8. That is because in 
these phases the operating conditions remain constant. Moreover, it can be observed that Bayesian 
methods, induction rules and classification trees are the algorithms which provide the best results. And as 
a final remark, they are very intuitive and easy to implement into the system. That is the reason why they 
have been proposed to be implemented in EMNOLGDA in order to detect friction and other failures from 
the current signal extracted from the extension movement.  

2.5 Functional failures 
Table 2 summarizes the failure modes described above, as well as indicates potential consequences and 
functional failures for each case.  
No fault modelling allows to identify the potential fault in the specific component, but the failure could be 
due to several components. And if a functional level diagnostic of the system is required, each component 
of the actuator must be modelled by multi-physics modelling. Nevertheless, from this modelling it is 
possible to derive the effects of some malfunctions of the system as explained in Table 2. Taking this 
information into consideration it is possible to make further decisions and take actions to prevent a 
catastrophic failure. For example, in the case of EMNOLDGA actuator, if serious friction in the opening of 
the landing gear was detected, then the anti-jamming system would be launched in order to prevent 
serious damage. Or if moderate friction was predicted, scheduled maintenance actions would be carried 
out when the UAV landed. 

3. Conclusions and Future work 
The reliability of the actuator in the flight control system is an important issue that usually depends on 
some testing performance under extreme operating conditions. The implementation of the HM system 
improves the reliability of the actuator, monitoring and providing the state detection by taking into account 
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some faults that may generate and cause damage to the actuator as well as its malfunction (i.e. excessive 
wear or jamming). 
The work introduces some steps to be performed in order to develop a HM system from the design stage 
of the actuator, when there is no test bench to experiment. It demonstrates the effectiveness of machine 
learning algorithms to realize the system state detection, as well as to decide which parts of the signal 
contain more information (variance) to distinguish between the normal behaviour and some faults. These 
algorithms are not commonly used in some fields of application but they have great potential to be applied 
and obtain valid results and they should be evaluated. Besides, as fault degrees can be detected, it would 
make it possible to predict the remaining useful life by adopting some regression methods, taking into 
account the working life of the system and using the result of the state detection for every operating cycle. 
The most important result of this research is that the HM system, based on the current signal and some of 
the machine learning algorithms, is able to detect the friction fault at different levels in order to provide the 
report to the actuator control unit that should take the required actions (i.e. use the anti-jamming 
mechanism). Nevertheless, the algorithms need to being readjusted and further work includes real 
experimentation, being planned but still pending, and final validation.  

Table 2: Summary of contemplated failure modes 

Simulated failure Potential consequence  Potential functional failure 
Degraded motor - Slower actuator response 

- Irregular behaviour risk if current saturates 
- Risk of surpassing equivalent thermal torque 

- Motor heats up: stop and/or burn 
- Motor not capable of moving load 
(according to requirements) 

Friction increase - Slower and more damped system 
- Increase of required torque 
- Irregular behaviour risk if current saturates 
- Risk of surpassing equivalent thermal torque 

- Wear of contacting elements 
- Actuator blocking due to excessive 
friction
- Motor heats up: stop and/or burn 
- Motor not capable of moving load 
(according to requirements) 

Backlash - Actuator does not move for a while during
inversions 
- Non-linear behaviour: strong discontinuities in
the force applied on the conducted element
during inversions 

- Enhanced fatigue/wear of elements 
involved in backlash 
- Positioning precision loss 

External force - Increase of required torque (worse if the force
is applied in the opposite direction to the
movement)
- Irregular behaviour risk if current saturates 
- Risk or surpassing equivalent thermal torque

- Fatigue of mechanical elements of
perturbation is periodic and sustained 
- Motor heats up: stop and/or burn 
- Motor not capable of  moving load 
(according to requirements) 
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