
CHEMICAL ENGINEERING TRANSACTIONS

VOL. 33, 2013

A publication of

The Italian Association
of Chemical Engineering

Online at: www.aidic.it/cet
Guest Editors: Enrico Zio, Piero Baraldi
Copyright © 2013, AIDIC Servizi S.r.l.,
ISBN 978-88-95608-24-2; ISSN 1974-9791

Research on the Simulation-based Fault Injection Design
with Consideration of Board-level Built-In Test

Yi Li a, Ping Xu a, Han Wan *,b

aKey Lab of Science & Technology on Reliability & Environment Engineering, Beihang University, No.37 of Xueyuan Rd.,
Haidian District, Beijing 100191, China
bState Key Laboratory of Virtual Reality Technology and Systems, Beihang University, No.37 of Xueyuan Rd., Haidian
District, Beijing 100191, China
wanhan@buaa.edu.cn

As embedded system is widely used in setting up avionic devices, it’s important to verify and validate the
system’s reliability. With the help of Built-In Test (BIT) technology, faults can be reported and isolated.
Especially the software BIT, which is a popular solution to test the dependability of embedded boards and
the entire system. Furthermore, the demand for dependable BIT software becomes more urgent. This
paper discusses the general requirements for BIT software testing including fault mode analysis, and then
presents a simulation platform which simulates embedded hardware boards and the external environments,
such as bus devices, Ethernet, and etc. At the same time, hardware faults and I/O data faults are modelled,
simulated and injected in this simulation system. Those contributed a simulated BIT software operating
system to perform board-level BIT software testing. Compared to traditional fault injection tools, this
system takes advantage of flexibility based on the software simulation technology and does no harm or
irruption to either the real hardware or the software. In addition, this system can be expanded with more
other fault modes including both on-board and on-bus using the simulation method mentioned in this paper.
In the future, it’s expected to build a robust simulation-based fault injection system that satisfies all the
general requirements in BIT software testing and this method can be applied to the further research on
PHM system validation.

1. Introduction
Testability products are designed to determine their status (working, not working or performance
degradation) timely and accurately, and have the characteristics to isolate the internal fault. With the
development of the system, as well as equipment performance increased, testing attracts more and more
attention. Built-In Test (BIT) can detect and isolate system or device’s internal fault automatically. As
airborne electronic equipment increased, and machine control becomes highly centralized, BIT achieves
an unprecedented importance. Testability research hot spot lies in the study of BIT and the further
development of its derivatives, such as prognostic and health management.
BIT software testing is regarded as a particular kind of embedded software testing, which associates with
its operating environment (embedded hardware platform) closely. And fault injection method can be
introduced for BIT software testing purpose. As far as known, injecting faults to the system that
incorporates BIT manually is an effective way for BIT software validation. After observing whether BIT can
detect and isolate the faults, we can find out that how the software BIT matched with the design
requirements, and the suggestion of the improvements for the design can be made.
In this paper we suggest to develop and build a simulation environment with fault injection capability which
is designed target for board-level software BIT operating environment, and this system can be used as a
simulation and fault injection platform for BIT software testing.
The rest of this paper is organized as follows. Section II summarizes the general requirements for BIT
software testing, as well as, the analysis of fault injection requirement. After that, the implementation of the
simulation and emulation environment together with fault injection mechanism are described in Section III.

DOI: 10.3303/CET1333101

Please cite this article as: Li Y., Xu P., Wan H., 2013, Research on the simulation-based fault injection design with consideration of
board-level built-in test, Chemical Engineering Transactions, 33, 601-606 DOI: 10.3303/CET1333101

601

And then, Section IV demonstrates fault injection cases designed to evaluate the software BIT with
considering the test credibility factors. Finally, Section V concludes the paper and prospects future work.

2. Fault injection for board-level BIT software testing
Generally, the Board-level software BIT’s workflow and test process that belongs to it are described in
Figure 1. This section mainly discusses the requirements for board-level BIT software testing, in other
words, analysis how to perform fault injection.

Board-level software
BIT startup

BIT tests component
1

BIT tests component
2

BIT tests component
N

detected
fault(s)?

Board-level fault
alarm and process

Report to system

yes

no

Board-level BIT
reports normal

 Built-in test on
component X

Test result

Compare with
standard result

same?

normal

Report to
upstream

yes no

fault

Figure 1: Board-level software BIT process and test flow

2.1 Board-level BIT software testing requirements
Board-level software BIT is designed for fault detection and fault isolation. So when faults occur on
hardware system, it’s critical for BIT software to detect all of them and report their fault modes correctly.
Regarding to the function requirements and design patterns of software BIT, a complete BIT test should
contain two aspects: whether software BIT could detect all the possible hardware fault modes of system
correctly, and whether software BIT false alarm the hardware faults that do not exist in fact.

Table 1: BIT software testing requirements

Function overview Functional testing requirements
state monitor real-time monitoring the key parameters of the system

record state information correctly
fault detection detect fault in proper way

reasonable fault detection design
complete record fault information

fault isolation recognize the fault mode
recognize the fault location
point the fault components need be replaced

fault alarm alarm the faults
whether false alarm

2.2 Fault mode analysis for software BIT detection
After comprehensive analysis of the fault modes of embedded hardware board and its external
environment, software BIT mainly detects the digital circuits and components on the hardware board. The
function fault modes and corresponding BIT detection method are expressed in Table 2 and Table 3.

Table 2: Functional fault modes and corresponding BIT detection method for CPU

Target Functional fault mode Fault location Fault type BIT detection method
CPU cannot execute instructions

correctly
cannot process software
data

Data register
Address register
Program counter
State register
Stack pointer
Float point register

one or more bit(s)
flip
one word flip
stuck at 0
stuck at 1

Function testing
Data value compare

602

603

604

Table 4: Fault checkpoints setting

Fault checkpoint Corresponding fault modes Location for setting
Accessing registers register bit flip / stuck-at (0 or 1) / miss

load / extraneous load
Simulator -> register

CPU execution illegal interruption / exception Simulator -> CPU
incorrect / extraneous instruction

Accessing memory memory bit flip / stuck-at (0 or 1) Simulator -> CPU
Simulator -> memorymemory cells coupled

I/O device initialize device initial error Simulator -> device
I/O operations read / write error Simulator -> device

Emulator -> I/O process

4. Experiments and evaluation
4.1 Work form design
For each fault injection experiment on BIT software testing, the detection and isolation capability should be
measured, as while as, less false alarm is expected. So we design the work form in our experiment as
Table 5, which can roughly evaluates software BIT system.
Fault Detection Rate (FDR) analysis: whether the faults injected in the simulation environment can be
detected by the software BIT under testing. Moreover, how many of them can be detected correctly.
Fault Isolation Rate (FIR) analysis: whether the faults injected in the simulation environment can be
isolated by the software BIT under testing. Moreover, how many of them can be isolated correctly.
False Alarm Rate (FAR) analysis: whether the under tested software BIT alarm of those not happened
faults, moreover, how many of them are false alarmed.

Table 5: Work form designed for BIT software testing

Item Designed fault rate FDR FIR FAR
1 CPU
2 Memory
3 I/O Devices
4 Input data

Total

4.2 Fault injection capability
Taking advantage of the /proc file system in Linux, we can examine the hardware information to detect the
fault. The ID Code Register (c0_cpuid) of CP15 Coprocessor is used to define a 32-bit device ID code,
which returns part number by [15:4] and layout revision by [3:0] in ARM architecture. Here we inject stuck-
at-1 fault to c0_cpuid’s 1st bit and bit-flip fault to its 5th and 6th bit. As shown in Figure 5, the fault can be
detected by the wrong display in /proc/cpuinfo, changed from normal value part.926 rev.5 (0x41069265) to
abnormal value part.920 rev.7 (0x41069207). It illustrates that these types of fault can be perceived.

Figure 5: Fault Injection Experiment on Processor Version Register

605

The General Purpose Registers (GPR) is used to transfer or register data which may affect in arithmetic
and logical operations. Sometimes, fault may influent the applications’ running or even lead to
unrecoverable failure to the OS. A permanent stuck-at-0 fault to GPR14 makes the system go into error
and automatically shut down after dump the exception messages.
Finally, we have tested all the faults simulated in the fault injection environment which can be configured
and injected correctly when the simulator and emulator is running. Furthermore, the faults to be injected in
an experiment can be configured and queried by monitor as well. Under the help of fault monitor and guest
operating system, we can detect the injected faults and observe their effect to the system.

5. Conclusion and future work
According to the requirements for BIT software testing, this paper proposed a QEMU-based fault
simulation and injection system, together with a workflow engine implemented I/O data emulation process.
It combines software simulation technique with fault injection to executes tests, and automatically inject
faults in the simulation environment. In addition, unmodified operating systems and applications, especially
the software BIT system can run on the prototype system without intrusion. Benefit from software
simulation technology, the simulation-based fault injection system also has the whole control to the entire
environment, which contributes to the fault injection process’s monitor and results’ efficient feedback.
In the future, we intend to consider the reproducibility of the system test and to design a hardware board
simulation library for easier extension, as well as, a fault injector library for more easily injecting and testing.
It’s also expected to evolve this research in PHM system development and validation.

Acknowledgement
This research was supported by the Technological Foundation Project of China Industrial Bureau for
National Defence Science and Technology (No.Z132012A004) and the fundamental research funds for the
Central Universities (Project No. YWF-12-LJJC-001).

References

Bellard F., 2005, QEMU, a Fast and Portable Dynamic Translator, Proceedings of the 2005 USENIX
Annual Technical Conference, Anaheim, USA, pp. 41-46.

DeBardeleben N., Blanchard S., Guan Q., Zhang Z. M., Fu S., 2012, Experimental Framework for Injecting
Logic Errors in a Virtual Machine to Profile Applications for Soft Error Resilience, Euro-Par 2011:
Parallel Processing Workshops, Lecture Notes in Computer Science, 2012, Vol. 7156, 282-291, DOI:
10.1007/978-3-642-29740-3_32.

Hanawa T., Koizumi H., Banzai T., Sato M., Miura S., Ishii T. Takamizawa H., 2010, Customizing Virtual
Machine with Fault Injector by Integrating with SpecC Device Model for a Software Testing
Environment D-Cloud, 2010 IEEE 16th Pacific Rim International Symposium on Dependable
Computing, Tokyo, Japan, pp. 47-54, DOI: 10.1109/PRDC.2010.37.

Huang F.Q., Xu P., Liu B., Li Y., 2009, The Research on Fault Equivalent Analysis Method in Testability
Experiment Validation, 8th International Conference on Reliability, Maintainability and Safety, Chengdu,
China, pp. 902-906, DOI: 10.1109/ICRMS.2009.5269965.

Kosar T., López P.M., Barrientos P.A., Mernik M., 2008, A Preliminary Study on Various Implementation
Approaches of Domain-Specific Language, Information and Software Technology, Volume 50, Issue 5,
April 2008, 390-405.

Sun J.Z., Wang J.Y., Yang X.Z., 2001, The Present Situation for Research of Fault Injection Methodology
and Tools. Journal of Astronautics, Vol. 22, No. 1 (in China).

Valderas M.G., Garcia M.P., Cardenal R.F., Ongil C.L., Entrena L., 2007, Advanced Simulation and
Emulation Techniques for Fault Injection, 2007 IEEE International Symposium on Industrial Electronics,
Vigo, Spain, 3339-3344.

Xu P., Kang R., 2004, The Research of Fault Injection System’s Framework in the Testability Experiment
Validation, Control Technology, Vol. 23, No. 8, 12-14 (in Chinese).

Wang Y.C., Zhou Z.Z., 2009, Software BIT Design and Testing for Embedded Software, 8th International
Conference on Reliability, Maintainability and Safety, Chengdu, China, pp. 703-707, DOI:
10.1109/ICRMS.2009.5270099.

Wang Y.C., Xu P., 2009, Build-In-Test Design and Test for Embedded Software, Computer Engineering,
Vol. 35, No. 17, 34-39 (in Chinese)

Ziade H., Ayoubi R., Velazco R., 2004, A Survey on Fault Injection Techniques, The International Arab
Journal of Information Technology, Vol. 1, No. 2, 171-186.

606

