A publication of

The Italian Association
VOL. 33, 2013 of Chemical Engineering

Online at: www.aidic.it/cet

CHEMICAL ENGINEERING TRANSACTIONS

Guest Editors: Enrico Zio, Piero Baraldi
Copyright © 2013, AIDIC Servizi S.r.l.,
ISBN 978-88-95608-24-2; ISSN 1974-9791 DOI: 10.3303/CET1333101

Research on the Simulation-based Fault Injection Design
with Consideration of Board-level Built-In Test

Yi Li 3, Ping Xu 3, Han Wan *P

@Key Lab of Science & Technology on Reliability & Environment Engineering, Beihang University, No.37 of Xueyuan Rd.,
Haidian District, Beijing 100191, China

bState Key Laboratory of Virtual Reality Technology and Systems, Beihang University, No.37 of Xueyuan Rd., Haidian
District, Beijing 100191, China

wanhan@buaa.edu.cn

As embedded system is widely used in setting up avionic devices, it's important to verify and validate the
system’s reliability. With the help of Built-In Test (BIT) technology, faults can be reported and isolated.
Especially the software BIT, which is a popular solution to test the dependability of embedded boards and
the entire system. Furthermore, the demand for dependable BIT software becomes more urgent. This
paper discusses the general requirements for BIT software testing including fault mode analysis, and then
presents a simulation platform which simulates embedded hardware boards and the external environments,
such as bus devices, Ethernet, and etc. At the same time, hardware faults and 1/O data faults are modelled,
simulated and injected in this simulation system. Those contributed a simulated BIT software operating
system to perform board-level BIT software testing. Compared to traditional fault injection tools, this
system takes advantage of flexibility based on the software simulation technology and does no harm or
irruption to either the real hardware or the software. In addition, this system can be expanded with more
other fault modes including both on-board and on-bus using the simulation method mentioned in this paper.
In the future, it's expected to build a robust simulation-based fault injection system that satisfies all the
general requirements in BIT software testing and this method can be applied to the further research on
PHM system validation.

1. Introduction

Testability products are designed to determine their status (working, not working or performance
degradation) timely and accurately, and have the characteristics to isolate the internal fault. With the
development of the system, as well as equipment performance increased, testing attracts more and more
attention. Built-In Test (BIT) can detect and isolate system or device’s internal fault automatically. As
airborne electronic equipment increased, and machine control becomes highly centralized, BIT achieves
an unprecedented importance. Testability research hot spot lies in the study of BIT and the further
development of its derivatives, such as prognostic and health management.

BIT software testing is regarded as a particular kind of embedded software testing, which associates with
its operating environment (embedded hardware platform) closely. And fault injection method can be
introduced for BIT software testing purpose. As far as known, injecting faults to the system that
incorporates BIT manually is an effective way for BIT software validation. After observing whether BIT can
detect and isolate the faults, we can find out that how the software BIT matched with the design
requirements, and the suggestion of the improvements for the design can be made.

In this paper we suggest to develop and build a simulation environment with fault injection capability which
is designed target for board-level software BIT operating environment, and this system can be used as a
simulation and fault injection platform for BIT software testing.

The rest of this paper is organized as follows. Section Il summarizes the general requirements for BIT
software testing, as well as, the analysis of fault injection requirement. After that, the implementation of the
simulation and emulation environment together with fault injection mechanism are described in Section Ill.

Please cite this article as: Li Y., Xu P., Wan H., 2013, Research on the simulation-based fault injection design with consideration of
board-level built-in test, Chemical Engineering Transactions, 33, 601-606 DOI: 10.3303/CET1333101
601



And then, Section IV demonstrates fault injection cases designed to evaluate the software BIT with
considering the test credibility factors. Finally, Section V concludes the paper and prospects future work.

2. Fault injection for board-level BIT software testing

Generally, the Board-level software BIT’s workflow and test process that belongs to it are described in
Figure 1. This section mainly discusses the requirements for board-level BIT software testing, in other
words, analysis how to perform fault injection.

Board-level software

BIT startup Built-in test on

component X

Test result
Compare with
standard result

BIT tests component

1

BIT tests component
BIT tests component
N

el
ni
yes O—l

Board-level fault Board-level BIT
alarm and process reports normal

Report to system

Figure 1: Board-level software BIT process and test flow

Report to
upstream

2.1 Board-level BIT software testing requirements

Board-level software BIT is designed for fault detection and fault isolation. So when faults occur on
hardware system, it's critical for BIT software to detect all of them and report their fault modes correctly.
Regarding to the function requirements and design patterns of software BIT, a complete BIT test should
contain two aspects: whether software BIT could detect all the possible hardware fault modes of system
correctly, and whether software BIT false alarm the hardware faults that do not exist in fact.

Table 1: BIT software testing requirements

Function overview
state monitor

Functional testing requirements

real-time monitoring the key parameters of the system
record state information correctly

detect fault in proper way

reasonable fault detection design

complete record fault information

recognize the fault mode

recognize the fault location

point the fault components need be replaced
alarm the faults

whether false alarm

fault detection

fault isolation

fault alarm

2.2 Fault mode analysis for software BIT detection

After comprehensive analysis of the fault modes of embedded hardware board and its external
environment, software BIT mainly detects the digital circuits and components on the hardware board. The
function fault modes and corresponding BIT detection method are expressed in Table 2 and Table 3.

Table 2: Functional fault modes and corresponding BIT detection method for CPU

Target Functional fault mode Fault location Fault type BIT detection method

CPU cannot execute instructions Data register

one or more bit(s) Function testing

correctly Address register flip Data value compare
cannot process software Program counter one word flip
data State register stuck at 0

Stack pointer stuck at 1

Float point register

602



Table 3: Functional fault modes and corresponding BIT detection method for Memory

Target Functional fault mode Fault location Fault type BIT detection method
RAM  wrong data write to RAM  Stack segment one or more bit(s) Function testing
wrong data read from RAM Code segment flip Data value compare
Data segment one word flip

Global or local variables stuck at 0
User defined variables  stuck at 1

ROM  Storage corruption Stack segment one or more bit(s) Checksum method
Code segment flip
Data segment one word flip

Global or local variables stuck at 0
User defined variables  stuck at 1

NVM  read or write wrong data Stack segment one or more bit(s) Function testing
Code segment flip Data value compare
Data segment one word flip

Global or local variable  stuck at 0

User defined variable stuck at 1
Accordingly, the key work of BIT software testing is to inject faults on its hardware platform, and observing
that how the system under test (SUT) detect and report them. Software simulation method is highly
appropriate for this purpose to build the operating environment with fault injection capable.

3. Simulation & emulation platform with fault injection

3.1 Architecture design

As we known, the real operating environment for software BIT is composed of multiple embedded boards,
which communicate with each other through the Ethernet, USB, bus and etc.. The Built-In Test application
is running on the operating system that above each board. We design the simulation platform for the fault
injection system as shown in Figure 2: each embedded board is abstracted as the simulation program
running on the host, which supports the guest OS with the BIT application on it. In the meanwhile, we
decoupled the whole system by using emulation program to produce the excitation signal instead of the
information from other connected embedded boards.

Real Operating Environment for Software BIT
s R — Ethernet
{ ——m— USB Client —
Complete Machine Simulator
<:> BUS master cPU Merhory
$3 <:> Prc Core @
o . L - RAM||it | Load
Embedded board [ % " Image
7 uQ H
Built-In Test 5 5 —Controller © N
Application 2 E ; as
2 2
Guest OS 8 s Cache .
imulated Operating Environment for Software BIT MMU ) [ | /O Devices
Simulation S S Emulation @ {}
Program /e e Program
P

I |
‘ System Call ‘ ‘ Peripheral Communication ‘

Figure 2: Architecture design for the simulation system Figure 3: Complete machine simulator with fault
injection capable

3.2 Embedded hardware board simulation

Simulator is a software program running on host machine that simulates the function of the embedded
hardware board, so it should provide an operating environment the same as the real hardware platform.
Here we modified a complete system simulator QEMU to simulate the target embedded hardware board,
which is regarded as the BIT software operating environment.

The goal of the simulator is to simulate the behavior of the target hardware board, so that it simulates the
execution of instructions, exceptions, interrupts and virtual to physical memory mapping as shown in
Figure 3. It uses Tiny Code Generator with basic block translation, which is a type of dynamic binary
translation technique. This technique is used to accelerate the guest to host binary code generation and
function simulation process.

603



Furthermore, we developed fault injection functions in the simulator to support BIT software testing
requirements. The faults injection in QEMU is implemented by simulate their fault behavior according to
the hardware related fault modes.

3.3 External environment emulation

The external environment emulation program is used to emulate external I/O request and retrieve
simulator's response. Since the emulator is a discrete event driven program, we need a robust, flexible
way to configure a set of triggers (e.g. BIT data query requests) and responses. This part of work is
implemented by a workflow engine -- Ruote, in which the process definition and input/output data format
can be described with Domain-Specific Language (DSL). Take the advantage of DSL, it's easy to define
input/output data content, as well as, create or change the emulation process.

Data definition

<request-data> <response-data>
<bits> <bits>
<bit-1>0xC<bit-1> <bit-1>0xA<bit-1>
<bit-2>0x6<bit-2> <bit-2>0x3<bit-2>
</bits> </bits>
</request-data> </response-data>

Process definition

Ruote.process_definition :name => 'BIT query case' do
sequence do
participant 'initial task’, :task => 'environment initialization'
concurrence do
participant 'request 1', :task => 'request for gather info'
participant 'request 2, :task => 'request for gather info'
participant 'request n', :task => 'request for gather info'
end
participant 'response’, :task => 'handle case'
end
end

3.4 Fault simulation and injection mechanisms

As shown in Figure 4, the normal simulation process is a loop of fetching an instruction, decoding and
executing the instruction. When the simulation arrives at a fault checkpoint such as read/write register,
ALU computation, memory access, and etc.. Then, searches in the customized fault sequence to find out
whether there contains associated faults that need to be injected. After that, pattern recognition is used to
judge whether there’s a fault need to be injected at this fault checkpoint. Comparing the fault trigger
condition (e.g. trigger type, fault inject time) with associated parameters from simulator's runtime
environment (e.g. program counter, execution time), the fault is injected when satisfies the condition.

Normal Simulation Process Simulator run into a
| fault checkpoint
" binary
.Instructions _ | Search in the fault
sequence
| intermediate |
| representation |
«[gpresemation
invalidate
E—— 3
@
data 3
H
"""" <2
Faultset to be inject
no- Trigger faults?

yes
v

Perform fault
injection

Figure 4: Fault Injection Workflow

Finally, the fault is injected by dispatching fault simulation procedure when the above steps have been
passed. The steps include fault pattern recognition and fault trigger condition judgement. Otherwise,
nothing would happen. Table 4 lists primary fault checkpoints setting in the simulation platform.

604



Table 4: Fault checkpoints setting

Fault checkpoint Corresponding fault modes Location for setting
Accessing registers  register bit flip / stuck-at (0 or 1) / miss Simulator -> register
load / extraneous load

CPU execution illegal interruption / exception Simulator -> CPU
incorrect / extraneous instruction

Accessing memory ~ memory bit flip / stuck-at (0 or 1) Simulator -> CPU
memory cells coupled Simulator -> memory

I/O device initialize device initial error Simulator -> device

I/O operations read / write error Simulator -> device

Emulator -> 1/0 process

4. Experiments and evaluation

4.1 Work form design

For each fault injection experiment on BIT software testing, the detection and isolation capability should be
measured, as while as, less false alarm is expected. So we design the work form in our experiment as
Table 5, which can roughly evaluates software BIT system.

Fault Detection Rate (FDR) analysis: whether the faults injected in the simulation environment can be
detected by the software BIT under testing. Moreover, how many of them can be detected correctly.

Fault Isolation Rate (FIR) analysis: whether the faults injected in the simulation environment can be
isolated by the software BIT under testing. Moreover, how many of them can be isolated correctly.

False Alarm Rate (FAR) analysis: whether the under tested software BIT alarm of those not happened
faults, moreover, how many of them are false alarmed.

Table 5: Work form designed for BIT software testing

ltem Designed fault rate FDR FIR FAR
1 CPU
2 Memory
3 1/O Devices
4 Input data
Total

4.2 Fault injection capability

Taking advantage of the /proc file system in Linux, we can examine the hardware information to detect the
fault. The ID Code Register (cO_cpuid) of CP15 Coprocessor is used to define a 32-bit device ID code,
which returns part number by [15:4] and layout revision by [3:0] in ARM architecture. Here we inject stuck-
at-1 fault to cO_cpuid’s 1t bit and bit-flip fault to its 5" and 6 bit. As shown in Figure 5, the fault can be
detected by the wrong display in /proc/cpuinfo, changed from normal value part.926 rev.5 (0x41069265) to
abnormal value part.920 rev.7 (0x41069207). It illustrates that these types of fault can be perceived.

(QEMU) info faults
bbb b bbb b bbb bbb b b b bt
: register:stuck-at-1
component: CPU
: CP15:cl_cpuid

bit: 00000001
B T T T T T S T sl s I
: register:bit-flip
component: CPU
target: CP15:c0_cpuid

PERMANENT

params:
bit: 00000005
bit: 00000006

B e S A A A T o S A R A o S O A e Y

Figure 5: Fault Injection Experiment on Processor Version Register

605



The General Purpose Registers (GPR) is used to transfer or register data which may affect in arithmetic
and logical operations. Sometimes, fault may influent the applications’ running or even lead to
unrecoverable failure to the OS. A permanent stuck-at-0 fault to GPR14 makes the system go into error
and automatically shut down after dump the exception messages.

Finally, we have tested all the faults simulated in the fault injection environment which can be configured
and injected correctly when the simulator and emulator is running. Furthermore, the faults to be injected in
an experiment can be configured and queried by monitor as well. Under the help of fault monitor and guest
operating system, we can detect the injected faults and observe their effect to the system.

5. Conclusion and future work

According to the requirements for BIT software testing, this paper proposed a QEMU-based fault
simulation and injection system, together with a workflow engine implemented 1/O data emulation process.
It combines software simulation technique with fault injection to executes tests, and automatically inject
faults in the simulation environment. In addition, unmodified operating systems and applications, especially
the software BIT system can run on the prototype system without intrusion. Benefit from software
simulation technology, the simulation-based fault injection system also has the whole control to the entire
environment, which contributes to the fault injection process’s monitor and results’ efficient feedback.

In the future, we intend to consider the reproducibility of the system test and to design a hardware board
simulation library for easier extension, as well as, a fault injector library for more easily injecting and testing.
It's also expected to evolve this research in PHM system development and validation.

Acknowledgement

This research was supported by the Technological Foundation Project of China Industrial Bureau for
National Defence Science and Technology (No.Z132012A004) and the fundamental research funds for the
Central Universities (Project No. YWF-12-LJJC-001).

References

Bellard F., 2005, QEMU, a Fast and Portable Dynamic Translator, Proceedings of the 2005 USENIX
Annual Technical Conference, Anaheim, USA, pp. 41-46.

DeBardeleben N., Blanchard S., Guan Q., Zhang Z. M., Fu S., 2012, Experimental Framework for Injecting
Logic Errors in a Virtual Machine to Profile Applications for Soft Error Resilience, Euro-Par 2011:
Parallel Processing Workshops, Lecture Notes in Computer Science, 2012, Vol. 7156, 282-291, DOI:
10.1007/978-3-642-29740-3_32.

Hanawa T., Koizumi H., Banzai T., Sato M., Miura S., Ishii T. Takamizawa H., 2010, Customizing Virtual
Machine with Fault Injector by Integrating with SpecC Device Model for a Software Testing
Environment D-Cloud, 2010 IEEE 16th Pacific Rim International Symposium on Dependable
Computing, Tokyo, Japan, pp. 47-54, DOI: 10.1109/PRDC.2010.37.

Huang F.Q., Xu P., Liu B., Li Y., 2009, The Research on Fault Equivalent Analysis Method in Testability
Experiment Validation, 8th International Conference on Reliability, Maintainability and Safety, Chengdu,
China, pp. 902-906, DOI: 10.1109/ICRMS.2009.5269965.

Kosar T., Lopez P.M., Barrientos P.A., Mernik M., 2008, A Preliminary Study on Various Implementation
Approaches of Domain-Specific Language, Information and Software Technology, Volume 50, Issue 5,
April 2008, 390-405.

Sun J.Z.,, Wang J.Y., Yang X.Z., 2001, The Present Situation for Research of Fault Injection Methodology
and Tools. Journal of Astronautics, Vol. 22, No. 1 (in China).

Valderas M.G., Garcia M.P., Cardenal R.F., Ongil C.L., Entrena L., 2007, Advanced Simulation and
Emulation Techniques for Fault Injection, 2007 IEEE International Symposium on Industrial Electronics,
Vigo, Spain, 3339-3344.

Xu P., Kang R., 2004, The Research of Fault Injection System’s Framework in the Testability Experiment
Validation, Control Technology, Vol. 23, No. 8, 12-14 (in Chinese).

Wang Y.C., Zhou Z.Z., 2009, Software BIT Design and Testing for Embedded Software, 8th International
Conference on Reliability, Maintainability and Safety, Chengdu, China, pp. 703-707, DOI:
10.1109/ICRMS.2009.5270099.

Wang Y.C., Xu P., 2009, Build-In-Test Design and Test for Embedded Software, Computer Engineering,
Vol. 35, No. 17, 34-39 (in Chinese)

Ziade H., Ayoubi R., Velazco R., 2004, A Survey on Fault Injection Techniques, The International Arab
Journal of Information Technology, Vol. 1, No. 2, 171-186.

606





