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The safety of high criticity industrial systems relies heavily on relatively complex programmed systems. 
Due to the complexity of the interactions between physical processes and their control, classical 
methodologies such as even- trees/fault-trees or Petri nets may not represent adequately the dynamic 
interactions existing between the physical processes (modeled by continuous variables) and the functional 
and dysfunctional behavior of its components (modeled by discrete variables). These hybrid systems can 
be mathematically modeled by piecewise deterministic Markov processes. To illustrate our approach, we 
present an academic problem. It has already been extensively studied in the literature under the name 
“heated hold-up tank” (Marseguerra, 1994; Marseguerra et al., 1995; Zhang et al., 2009).   
 
1. Introduction 
A current challenge in reliability analysis today is to take into account the dynamic behavior of systems. 
The modeling is a key step in order to study the properties of the involved physical process. It appears 
now necessary to take into account explicitly and in a realistic way the dependencies, in other words the 
dynamic interactions existing between the physical parameters (for example: pressure, temperature, flow 
rate, level) of the process supported by the system and the functional and dysfunctional behavior of its 
components. For a large class of industrial processes, the layout of operational or accidental sequences 
generally comes from the occurrence of two types of events: 

• The first type is directly linked to a deterministic evolution of the physical parameters of the 
process, 

• The second type of events is purely stochastic. It usually corresponds to random demands or 
failures of system components. 

It is well known that the classical methods used in systems reliability field, such as combinatory 
approaches (fault trees, event trees, reliability diagrams) or Markov and semi-Markov models are not able 
to correctly model physical processes involving deterministic behavior.  

In 1980, M.H.A. Davis (1993) introduced in probability theory the Piecewise Deterministic Markov 
Processes (PDMP) as a general class of models suitable for formulating optimization problems in queuing 
and inventory systems, maintenance-replacement models, investment scheduling and many other areas of 
operation research. The notion of piecewise deterministic process is very intuitive and simple to describe. 
The state space of this system is given, for example, by a subset E of the set Rd. Starting from x in E, the 
process follows a deterministic trajectory (given, for example, by the solution of an ordinary differential 
equation) until the first jump time T1 which occurs either spontaneously in a random manner or when the 
trajectory hits the boundary of E. In both cases, a new point is selected by a random operator and the 
process restarts from this new point. Consequently, if the parameters of the physical process under 
consideration are described by the state x of a piecewise deterministic process, between two jumps the 
system follows a deterministic trajectory. 
The approach combined with Simulink and Stateflow offers interesting perspectives for dynamic reliability 
analysis for hybrid system. The continuous part of the system can be modeled by Simulink block while its 
discrete part can be modeled by Stateflow charts. In the first part of the paper, a benchmark system is 
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described and modeled by a PDMP. In the second part, the simulation procedure based on 
Simulink/Stateflow is proposed to evaluate the cumulative probability of three undesirable events inherent 
to the hybrid system. In the last part, to validate numerically our approach, we compare with the results 
obtained in (Zhang et al., 2009). 

2. The heated hold-up tank problem 
The system was first introduced by Aldemir (1987) where only one continuous variable (liquid level) is 
taken into account, and then in (Marseguerra, 1994) and (Marseguerra et al., 1995) where the second 
variable (temperature) is introduced. They have tested various Monte Carlo approaches to reliability and 
safety analysis. Tombuyses et al., (1996) have used the same system to present continuous cell- to-cell 
mapping Markovian approach (CCCMT). The holdup tank example has been widely studied in the 
literature (not exhaustive) (Siu, 1994, Cojazzi, 1996, Dutuit et al., 1997, Schoenig et al., 2006, Li et al., 
2011, de Saporta et al., 2012). 
The system consists of a tank containing a fluid whose level is controlled by three components: two inlet 
pumps (Unit 1 et 2) and one outlet valve (unit 3) . Each component has four states: OFF, ON, Stuck OFF, 
and Stuck ON. The transition among different states is schematized by the right hand side of figure 1. It is 
an inhomogeneous Poisson jumps process. A thermal power source heats up the fluid, the failure rates λc  
of the components depends on the temperature: λc = a(θ)λ̂ c, c =1,2,3, where  

a(θ ) = (b1e
bc (θ −20) + b2e

−bd (θ −20) ) /(b1 + b2 ) (1) 

with 
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Figure 1: Heat holdup tank and states transitions of the components 

A control law is used to modify the state of the components to keep the liquid between two limits : 6 meters 
and 8 meters. 

• Law 1: If the liquid level drops under 6 meters, the components 1,2,3 are put respectively in the 
state ON,ON and OFF (if they are not stuck ON of OFF) 

• Law 2: if the liquid level rises above 8 meters, the components 1,2,3 are put respectively in the 
state OFF,OFF and ON (if they are not stuck ON of OFF) 

The two continuous variables are the liquid level h and the temperature , which are both functions of the 
state of the components. At t = 0, the system is assumed to be in the equilibrium state, i.e. the components 
are in state (ON, OFF, ON), the temperature  is 30.9261 0C and the liquid level h is 7 meters. The 
variables (h(t), (t)) satisfy the following differential equations 

dh /dt = r1(v)
dθ /dt = (r1(v) − r3(v)θ )/h

 
 
 

 (2) 

where v = (v1,v2,v3)   
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vc =
0 if c is OFF or stuck OFF
1 if c is On or stuck ON
 
 
 

 (3) 

and  

r1(v) = (v1 + v2 + v3 )G , r2(v) = (v1 + v2 )Gθ in + 23.88915, r3(v) = (v1 + v2 )G  (4) 

with θ in =15,G =1.5 . 
Physically, the discrete variablev  denotes the different regimes of the system  and rc, c = {1,2,3} , are 
constant in each regime. The system (2) is derived from the mass and energy conservation laws. We are 
interested in three possible Top Events: dry out (h  4 meters), overflow (h  10 meters) and hot 
temperature (θ ≥1000C ), p1(t), p2(t) and p3(t) are the cumulative probabilities of these Top Events at time t. 
Let x0 = (h0,θ0), v = (1, 0,1)  be the initial condition of the process variables at time t=0. According to the 
configuration of the system, the coefficients of the differential equation system can be zero, and there exist 
four different behaviors for (h(t), (t)) and for every case, an analytical solution exists. The heated tank 
problem can be modeled rigorously by piecewise deterministic Markov processes (PDMP) (Davis, 1993). 
One can find the detail in (Zhang et al., 2009), where a Monte Carlo simulator is implemented using the 
analytical solution. Unfortunately, in general, especially in industrial applications, analytical solutions do not 
exist, numerical approximation has to be used to solve the differential equation. 

3. Simulink/Stateflow implementation 
A Simulink/Stateflow design is represented graphically as a diagram consisting of inter connected Simulink 
blocks. It represents the time-dependent mathematical relationships between the inputs, states and 
outputs of the design. 
Time Discretization: Let t be the time step size, the objective of our approach is to calculate the couple 
(h(t), (t)) and simulate the probability of failure of each component at every time step. Let T be the failure 
time of a component, let (t) be the failure rate, then the density function and distribution function of T are 
defined respectively by f (t) = λ(t)e− λ (s)ds0

t  and F(t) = 1 − e− λ(s)ds0
t , the probability that the component fails during 

time interval [t, t + t) given that T  t is defined by 

P( t ≤ T < t + Δt | T ≥ t) =
F( t + Δt) − F( t)

F(t)
=
e− λ (s)ds0

t
− e− λ (s)ds0

t+Δt

e− λ (s)ds0
t =1 − e− λ (s)dst

t+Δt  (5) 

Here we considered that the failure rate is defined by λc = a(θ)λ̂ c, c =1,2,3 and (t) is piecewise constant 

in [t, t + t) so that this probability can be estimated by 1 − e−λ̂ ca(θ (t ))Δt . 
Let’s present now the detail of our approach. The global Simulink/Stateflow scheme of the simulator is 
presented in the left part of the Figure 2. It is composed of three principal sub blocks, named respectively 
Diff. Equation, Gamma Function, and Controller. 

Figure 2: Simulink/Stateflow model and implementation of differential equation 

Differential equations solver: one of the reasons for which we chose this software is that it is a powerful 
tool for modeling in a concise way the behavior of nonlinear differential equations. The right hand side of 
figure 2 shows the details of the solver. Two dependent equations are modeled. The first one (dh/dt = r1(v)) 
represents liquid level, with 7.0 as initial condition. The second one (d /dt = (r2(v) r3(v) )/h) represents the 
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temperature, with 30.9261 as initial condition. As illustrated, the Matlab function f(u) has four input 
variables : u(1)=r2, u(2)=r3, u(3)=h and u(4)= , the function is defined by f(u) = (u(1)�u(3)*u(4))/u(2). At every 
time step, according to the flow rate values (r1, r2, r3), the solver calculate the variables (h, ). Simulink 
proposes different solvers, we chose an order four Runge-Kutta solver. 
Gamma Function: the objective of this Matlab function is to calculate (r1, r2, r3), the flow rate of the three 
valves. 
 
function [r1 r2 r3] = Gamma(v)  
r1 = (v(1)+v(2)-v(3))*1.5;  
r2 = (v(1)+v(2))*1.5*15+23.88915; r3 = (v(1)+v(2))*1.5; 

It has v=(v1, v2, v3) as input variables, which represent discrete state of three valves. 
 
Controller: the discrete part of this hybrid system is modeled by the Stateflow charts Controller. Figure 3 
illustrates the implementation. The input variables are (h, ) and c_seed. We distinguish four parallel states: 
valve1,2,3 and ValveValue. Each valve has four states: On, Off, Stuck�On and Stuck�off, the transition among 
the states is conditioned by the two types of event: the crossing of a threshold of liquid level h or the 
failure. At the beginning of the simulation, the state of the chart is (Valve1.On, Valve2.Off, Valve3.On), which 
means the state of three valves is (ON, OFF, ON). It will not be changed until an event occurs. For 
example, suppose at time t the valve1 is in state On, two kinds of events can induce the transition of state. 
Deterministic event: when the liquid level reaches 8 m.  
Stochastic event: when the valve1 fails (to Stuck�On or Stuck�Off).
To simulate the second event, a random Bernoulli variable B(p) is drawn (implemented by a Matlab 
function failure(lamb)) with parameter p =1 − e−λ̂ ca(θ (t ))Δt . For instant, if the result x of the drawn is 1, then the 
valve1 fails, a transition to Stuck�On will be done. As the liquid level h(t) and temperature (t) are 
calculated at every time step by the Simulink block Diff.Equation, the state transition (failure, level control) of 
the three valves is then simulated dynamically. The output variable is v=(v1, v2, v3), it is calculated by the 
fourth parallel state ValveValue at each time step by using Eq(3). 
The constant c_seed is added in order to initialize the random generator. The simulation is stopped 
whenever one of the three conditions is reached: h 10, h 4 and 100, otherwise the simulation will stop 
at the final time 1000 h. 

 
Figure 3: Stateflow chart: Level controller 

 

4. Numerical results 
The trajectories of (h(t), (t)) can be monitored by a Scope block. The left hand side of figure 4 illustrates an 
example, the simulation is stopped at t = 120.61 by a Top Event   100. 
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Figure 4: A trajectory example and cumulative probability of Top events 

 
A small sample of results is presented in the table in Figure 4. They correspond to the occurrence 
probabilities of the above top-events estimated from both the reference solution from (Zhang et al., 2009) 
and the Simulink/Stateflow approach. The cumulative probabilities of the Top Events can be estimated by 
using a large number of histories. Figure 5 gives the results from a 103 and a 105 histories sampling 
compared with the reference solution. The time step size is fixed as 0.01h. We can observe the 
convergence of the method with respect to the number of histories.  We use the results from 107 histories  
 

 
Figure 5: Results for N=10e3 and N=10e5 compared with reference solution 

obtained in (Zhang et al., 2009) as our reference solution. 

5. Conclusions 
In this paper, we are interested in an academic example.  It has only 3 components and 64 discrete states. 
However, despite its simplicity, this example is considered as a good benchmark in reliability-community 
for several reasons: it is not trivial because it has two continuous variables, the differential equations have 
analytical solutions, which provides a reference result and facilitates comparisons of different approaches. 
But from the point of view implementation, some methods proposed in the literature are not feasible in 
industrial scale due to the combinatorial explosion problem. A judicious choice in software becomes 
crucial. The modeling by PDMP applies very well to problem of dynamic reliability. The approach 
combined with Simulink/Stateflow allows building an interactive simulator. It has many merits: the upgrade 
maintenance of the simulator is easy and intuitive; there is no limit in the number of components; several 
continuous variables can be simultaneously taken into account. 
The approach proposed in this paper has been applied to an industrial example (Zhang et al., 2012), 
where a control system of water level in the steam generator (SG) in the secondary circuit of a nuclear 
power plant is considered. In particular 

• 7 components are taken into account, the total number of possible combinations for all components 
is  9.09E+11. 

• 4 continuous variables are modeled, they follow a system of non-linear differential equations. 
• A PID controller is integrated in the system.  
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We have simulated the complete behavior of the system, including sensors and a continuous-time PID 
controller. A 18 months scenario takes around 10-20 s per history. Numerical experiments show that this 
approach is well suited for treating this class of hybrid systems of industrial size. 
The main disadvantage of this approach is execution time. For the hold-up tank test case that we handled, 
105 histories are simulated in about 23 h (on a laptop), while a C++ simulator (Zhang et al., 2009) to this 
takes only 16 min. We have partially solved the problem by using the parallel computing toolbox of 
Mathworks. A computer equipped with 12 cores, reduced the computation time to 2.4 h. 
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