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The recent and promising machine learning technique called support vector machine (SVM) has become a 
hot research subject in time series forecasting, since proposed from Statistic Learning Theory by Vapnik. 
As an important application of time series forecasting, reliability prediction by analyzing the historical time 
series data of system condition to predict the future system behaviour and/or diagnose the possible 
system fault, has been solved successfully by SVM with high forecasting accuracy. For this, the critical 
problem is the selection of SVM parameters. Many methods have been proposed, such as genetic 
algorithm, particle swarm optimization and analytic selection; but there is no generally structured way, yet. 
In this paper, the capability of SVM to perform function fitting and reliability forecasting based on different 
methods is investigated by experimenting on both artificial and real-world data. A comparison of the 
methods is offered on criteria of prediction accuracy and robustness. Finally, an attempt is made to obtain 
a comparative optimal parameter selection method. 

1. Introduction 
Safe and reliable operation of engineering systems is very important. To guarantee this, reliability analysis 
and risk assessment offer sound technical frameworks for the study of component and system failures, 
with quantification of their probabilities and consequences (Zio, 2009). In this frameworks, one important 
goal is reliability prediction. Under certain conditions, reliability prediction can be seen as a time series 
prediction problem whose solution entails predicting the future values of reliability based on past data 
observations. A widely used prediction approach is the ARIMA model, with solid foundations in classical 
probability theory. However, the time-consuming off-line modelling efforts required for model identification 
and building limits its usefulness in practical applications (Lu et al., 2001). In recent years, neural network 
has emerged as a universal approximator for any nonlinear continuous function varying over a time or 
space domain, and has been applied successfully to various reliability problems such as software reliability 
prediction (Adnan and Yaacob, 1994) and complex system maintenance (Amjady and Ehsan, 1999). 
However, practical difficulties are encountered due to the need of large datasets for training, no guarantee 
of convergence to optimality and the danger of over-fitting (Chen, 2007, Sapankevych and Sankar, 2009). 
Another powerful machine learning paradigm is the Support Vector Machine (SVM) developed by Vapnik 
and others in 1995 (Vapnik, 1995), based on statistics learning theory and VC theory. SVM embodies the 
idea of minimizing the Structure Risk Minimization (SRM) rather than the Empirical Risk Minimization 
(ERM) adopted in neural network training. Since the ERM principle is most suited for large training 
datasets, SVM has been proven to provide superior performances than neural networks on small datasets. 
For this reason, SVM has been applied to many machine learning tasks including time series prediction 
and reliability forecasting. For example, Hong applied the SVM method to predict engine reliability and 
compared the predicting performance with the Duane model, ARIMA model and general regression neural 
networks (Hong and Pai, 2006). Experiment results show that the SVM model has better performance over 
the other models. 
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When applying SVM to regression and prediction problems, the performance depends heavily on the 
setting of the free meta-parameters of SVM. Then, how to select the parameters is a main issue for 
practitioners trying to apply SVM. The grid searching algorithms combined with k-fold cross validation are 
often used to find the best value set of the parameters. But the computational burden can be heavy, which 
renders this exhaustive method little practical. A simple but practical analytical selection approach (AS) 
can provide the basic form of the parameters (Cherkassky and Ma, 2004); advanced optimization 
algorithms such as simulated annealing (SA) (Pai and Hong, 2006), genetic algorithm (GA) (Chen, 2007) 
and particle swarm optimization (PSO) (Lins et al., 2011) have also been used for SVM parameters tuning.  
In this paper, we investigate the capability of SVM parameters tuning by AS, GA and PSO for function 
regression and reliability prediction. The investigation is carried out by way of some experiments on both 
artificial and real world data. 
The remainder of the paper is organized as follows. Section 2 introduces background knowledge about 
SVR and the basic theory of AS, GA and PSO is presented in Section 3. Section 4 presents the 
experiments on artificial and real-world datasets through which the regression performances of the three 
methods are compared. Section 5 provides some discussions and conclusions on the experiment results. 

2. Support vector machines for regression 

Given a dataset {( , }n
i i iD y= s , where l

i R∈s  denotes the l-dimension input vector, iy  denotes the real-
valued output and n  is the number of data patterns,, we consider, first, an SVM to estimate the linear 
regression function: 

( ) T
i if b= +s w s                                                                                                                                             (1) 

where w and b are respectively the weight vector and intercept of the model that one needs to find for 
optimal fitting of the data in D .
In the nonlinear case, by a nonlinear mapping Φ : lR F→ , where F  is the feature space of Φ , the SVM 
transforms the complex nonlinear regression problem into the comparatively simple problem of finding the 
flattest function in the feature space F (Chen, 2007). Then, the regression function takes a general form 
suitable for both linear and nonlinear cases: 

( ) ( )T
i if b= Φ +s w s                                                                                                                                        (2) 

Then, we introduce the ε -insensitive loss function (Vapnik, 1995): 

=
0, | ( ) |

| ( ) |
| ( ) | ,

i i
i i

i i

y f
l y f

y f therwise
ε

ε ε
                      − ≤

= −
− −    ο  

s
s

s                                                                                          (3) 

which ignores the error if the difference between the prediction value obtained by Eq.(2) and the real value 
is smaller than , which is a parameter to be tuned. For the error larger than ε , slack variables *,ξ ξ are 
introduced to respectively represent the functional distance of two possible but mutually exclusive samples.  
By introducing the ε -insensitive loss function, we can measure the empirical error and set up a procedure 
for minimizing it. Besides, in SVM we must also minimize the Euclidean norm of the linear weight w , w ,

which is related to the generalisation ability of the SVM model trained. Then, a compromised optimal 
quadratic optimization problem to identify the regression model arises as follows: 
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where C denotes the penalty coefficient that modulates the trade-off between empirical and generalization 
errors, and must be also tuned by the analyst. The solution of this quadratic optimization problem obtained 
by the Lagrangian dual method gives the optimal w and b through which we can estimate the prediction 
value numerically:
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where ( , )i jK s s  is the kernel function satisfying the Mercer condition (Boser et al., 1992). If not mentioned 

specifically, the kernel function used in this paper is the radial basis function with width γ  also to be tuned 
by the analyst. 

3. Parameter selection methods 
3.1 AS method 
The analytic selection (AS) method chooses the parameter triplet, [ ], ,C ε γ=X , directly from the training 

data and (estimated) noise level analytically as follows (Cherkassky and Ma, 2004): 

 
In max( 3 , 3 ),   3 ,   (0.1 0.5) ( )y y

nC y y range
n

σ σ ε σ γ= + − = − × s∼                                                             (6) 

where y  and yσ  are the mean and the standard deviation of the y values, ( ) | max( ) min( ) |range = −s s s ,
σ  is the estimated noise level of the training data obtained by the following prescription via the k-
nearest-neighbour’s method: 
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where � iy  is the regression value via k-nearest-neighbour’s method. 

3.2 GA method 
Genetic algorithms (GA) are a family of evolutionary computational models inspired by the theory of 
evolution. These algorithms encode each potential solution of the optimization problem in a simple 
chromosome-like data structure, and then sift the critical information via some recombination operators 
that imitate biological evolution processes such as survival of the fittest, crossover and mutation (Whitley, 
1994). The basic procedure of GA method adopted in our work is described as follows (Chen, 2007): 
1)  Representation: Chromosome X  is directly represented as a SVM parameter vector [ , , ]C ε γ=X . 
2)  Fitness: The fitness value evaluating the quality of chromosome X is defined as the mean square error 
of the 5-fold cross validation ( CVMSE ) method on the training data with SVM parameters X . 
3)  Initialization and selection: In this study, the initial population is composed of 40 chromosomes 
randomly generated within the given ranges ov variability of the three parameters to be tuned and the 
standard roulette wheel method is employed to select survival chromosomes from the current population, 
in proportion to their fitness values. 
4)  Crossover and mutation: As the core operation of GA, crossover and mutation play a fundamental role 
in the progress of searching the best chromosome. In our study, the simulated binary crossover and 
polynomial mutation methods are chosen to realise the according operations. The probability of crossover 

cp  and of mutation mp are respectively set to 0.8 and 0.05. 
5)  Elitist strategy: The chromosome with the best fitness will skip the crossover and mutation procedure 
and directly survive until the next generation. 
6)  Stopping criteria: steps 3-5 are repeated for a predefined number of generations (in our application this 
is set to 100). 

3.3 PSO method 

Particle swarm optimization (PSO) is a population-based meta-heuristics that simulates social behaviour 
such as birds flocking to a promising position (Lin et al., 2008). PSO performs searches through a 
population (called swarm) of individual solutions (called particles) that update iteratively. Each particle at 
iteration t can be represented by a D-dimensional state vector as 1 2{ , , ..., }t t t t

i i i iDX X X=X . Then, to obtain the 

optimal solution, we define D-dimensional velocity vectors 1 2{ , , ..., }t t t t
i i i iDV V V=V for each particle and 

determined by its own best previous experience ( pbest ) and the best experience of all other particles
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 ( gbest ). Particles change velocity according to the pbest  and gbest  as follows: 

1
1 1 2 2( ) ( ),     1, 2,...,t t t t t t

id id id id id idc r pbest c r gbest d D−= + − + − =V V X X                                                                      (8) 

where 1c , 2c  are the learning factors set to 2 in this study and 1r , 2r  are random numbers distributed 
uniformly in the range (0, 1), i.e. U(0,1). Then, each particle updates to a new potential solution based on 
the velocity as: 

1 ,            1,2,...,t t t
id id id d D+ = + =X X V                                                                                                                  (9) 

When the iteration number reaches a pre-determined maximum iteration number, the update process is 
terminated and the best individual of the last generation is the final solution to the target problem. 

4. Experiments results 
In this Section, we perform some simulated experiments to investigate the capability of these three 
methods for optimal searching the SVM parameters. We consider function regression problems which are 
not directly related to the reliability prediction problem of interest but hold similar characteristics while, on 
the other hand, being easily implemented and controllable. Through these regression cases, we can 
systematically compare the prediction performance of the three methods for optimal SVM parameter 
identification in terms of accuracy, stability and sensitivity to noise. The findings of these experiment 
studies will guide the choices of the settings of the algorithms for the reliability prediction case of interest.     

4.1 Function regression 
First, we consider the sinc function ( )f s  (Borwein et al., 2010) 

( ) 10sin( ) /           [ 10,10]f = ∈ −s s s s                                                                                                               (10) 

The simulated training data are n pairs ,( ),  ( 1,..., )i iy i n=s , where is  are random–uniformly sampled in the 

pre-defined range and iy  are generated as ( ) .y f σ= +s We first consider the case with noise level
2σ = ,and n=40. The test data are also random-uniformly sampled in the same range as the training data. 

Figure 1, visually shows that all the three parameter selection methods are capable of approximating the 
target function.  GA and PSO methods yield better generalisation performance, at the cost of a much 
heavier computational burden than the simpler AS method. 
To compare in an integrated manner the three methods of SVM parameters tuning, we evaluate the 
prediction risk, defined as the mean squared error (MSE) between the SVM estimates and the 
corresponding true values of the target function output for the test input values.  For this, and to account 
for the randomness of the estimation process, we perform the regression seven times for a same target 
function value. Figure 2 confirms the overall superiority of GA and PSO. One can also notice the 
fluctuations in GA performance, which has worse stability than the PSO method which consistently gives a 
high prediction accuracy.
Table 1 gives the results of experiments for different target function types and noise levels. In general the 
PSO and GA methods perform better than the AS method. Further, the mean value and standard deviation 
of GA method tend to become large as the noise level increases. This shows the GA method’s instability 
and sensitivity to noise. On the contrary, for all function types and noise level considered, PSO method 
performs satisfactorily in both mean value and standard deviation, which means a superiority of PSO 
method both in generalisation performance and stability.  
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Figure 1:  Comparison of SVM estimates for the case of the sinc function with 2σ =
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Table 1:  MSE for different function types with different noise levels 

Target function : y s=
Noise
level Methods MSE Mean Standard

variance

1σ =
AS 0.2209 1.2387 0.6475 1.3284 0.13303 0.4534 0.1034 0.589333 1.569845
GA 0.2163 0.9306 0.7536 0.9631 0.1657 0.3780 0.2173 0.5178 0.749019

PSO 0.1602 0.8115 0.4454 0.7543 0.2547 0.3529 0.2810 0.437143 0.38226

2σ =
AS 0.83162 1.9473 2.6628 1.9854 2.5502 2.2687 0.0935 1.762789 5.423183
GA 4.3132 1.8693 2.5218 0.2298 6.2979 7.1492 2.9968 3.625429 36.25955

PSO 0.3101 0.1397 1.2607 0.0648 0.4941 0.2232 0.0097 0.357471 1.108788

Target function : 2 1y s s= + +

5σ =
AS 7.6928 49.5629 10.8916 17.3639 12.9373 22.2204 42.8112 23.3543 1611.748
GA 11.3244 11.6291 4.4968 9.2407 18.4272 12.5531 31.2114 14.1261 443.5563

PSO 8.5105 7.3955 2.2536 2.7347 14.5867 10.8193 10.6673 8.138229 119.6843

10σ =
AS 72.7756 37.8415 23.4862 39.4547 66.1863 129.980 55.4059 60.73289 7362.399
GA 70.78275 18.6030 12.7345 16.2283 128.013 64.0742 5.4549 45.12724 12049.11

PSO 81.6381 27.4305 15.6488 11.9962 42.3675 61.2897 8.5596 35.56149 4578.37
Target function : sin( )y s=

0.5σ =
AS 0.3734 0.3047 0.3123 0.3381 0.4152 0.3976 0.3241 0.3522 0.011316
GA 0.08427 0.08595 0.1429 0.0672 0.1814 0.1289 0.0849 0.110789 0.010236

PSO 0.1190 0.09044 0.1620 0.08235 0.1557 0.1307 0.0847 0.117841 0.006659

0.25σ =
AS 0.3274 0.1761 0.2637 0.4132 0.1814 0.2005 0.2142 0.253786 0.046611
GA 0.0723 0.0248 0.0125 0.1101 0.0338 0.0308 0.0640 0.049757 0.006977

PSO 0.0379 0.0168 0.00856 0.0675 0.0490 0.0227 0.0671 0.038509 0.003387

4.2 Reliability prediction 
In this Section, a reliability prediction experiment concerning submarine failure data is carried out. The 

data set contains 70 submarine failure times that increase approximately linearly as time goes by except  
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Figure 2: Estimate MSE for seven times for sinc function with 2σ =

Figure 3: Reliability results for submarine failure data using AS, GA and PSO method.
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Table 2:  Estimate MSE for reliability predictions in section 4.2 

Methods MSE Mean Standard 
deviation 

AS 6.0943 6.0943 6.0943 6.0943 6.0943 6.0943 6.0943 6.0943 0 
GA 1.0936 1.2708 5.3472 5.9729 1.2247 0.3772 0.3118 2.2283 2.2059 

PSO 0.3118 0.3126 0.3123 0.3124 0.3171 0.3119 0.3118 0.3128 0.0018 

for a hopping in correspondence of time index 64. Prediction is done by a one-step ahead strategy for 
predicting the next ((t+1)-th) failure time based on the current (t-th) failure time  In this experiment, the first 
60 time-to-failure data are used as training set and the final 10 data as test set. Because it is difficult to get 
good estimates of the noise in the training data in practical reliability prediction applications, the AS 
method, which relies heavily on the noise level estimates, shows bad performance in tracking the trend of t
he reliability data. Instead, as Figure 3 shows, the GA and PSO methods are both capable of capturing the 
trend of the failure data. Even for the “hopping” data, PSO provides a satisfactory prediction performance, 
whereas GA gives poorer predictions because of weaker generalization ability. In reliability prediction case, 
The information reported in Table 2 confirm the instability of the GA method and superiority of the PSO 
method . 

5. Conclusion 
In this work, we have investigated the AS, GA and PSO parameter methods for selecting the parameters 
of SVM in regression and prediction tasks. Our experiments results suggest that PSO gives superior 
performances, whereas AS gives comparatively low accuracy and GA is somewhat unstable.  
Although the performance of AS is not comparatively satisfactory, its extremely low computational burden 
makes it attractive for initializing the parameter values for the GA and PSO methods and optimizing their 
search evolution process to accelerate it and stabilize it: how to embed this into a dynamic online method 
is a future research issue. 
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