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The maturation of PHM functions is focused on two Key Performance Indicators (KPI): The NFF, No Fault 
Found ratio, i.e. probability of a fault detection to be unverified, and the Probability Of Detection POD 
The estimation of the second KPI can be done by counting the global abnormality threshold trespassing 
when each different kind of degradation is simulated. The first KPI is rather a requirement. It induces a 
constraint on the threshold position in terms of probability of threshold trespassing with no degradation. 
Typically, for a probability of fault occurrence of 10-7, a specified NFF ratio of 1 %, and an expected POD 
of 90 %, the order of magnitude of probability of threshold trespassing with no degradation should be 10-9.
The estimation of such extreme level of probability needs some parametric adjustment of the distribution of 
the global abnormality score with no degradation. 
Two PHM functions are considered as case studies: Turbofan engine start capability (ESC) and turbofan 
engine lubrication oil consumption (EOC). 
In ESC the global abnormality score is a norm of a vector of specific abnormality scores. Some specific 
scores are devoted to starter air supply.  
In EOC, the global abnormality score is the consumption estimation. 
To reach acceptable POD at the specified NFF ratio three improvements are needed for ESC: 
– Adjust the abnormality decision threshold according to each candidate degradation using extreme 

value quantiles on the global abnormality score distribution 
– Average the global abnormality score on five consecutive starts 
– Learn the regression relations specifically on each engine.  
The first improvement is a novelty. It is successfully applied to both ESC and EOC functions. It is generic 
to all airborne system PHM functions based on abnormality scores. 

1. Introduction 
A maturation process of PHM functions is followed. First, generic sub functions of system PHM are 
considered. This is illustrated on two use cases. Then, two Key Performance Indicators (KPI) are chosen 
according to the considered sub functions and to airline business models. The estimation of these KPI is 
defined. To reach acceptable levels of KPI on the use cases, some improvements of the functions are 
proposed.  

2. Case studies 
2.1 General 
PHM functions are usually represented as OSA-CBM architecture (MIMOSA, 1998). Table 1 typically 
represents such an architectural architecture applied to a system PHM (Lacaille, 2010). 
The specificities of a given PHM function are restricted to level #1 Data acquisition and level #2 Data 
manipulation through indicators and context parameters. The next levels are, in general, common and may 
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have à learning mode in addition to the basic PHM mode. Such learning modes are tagged in table 1 with 
an asterisk* or two**. 

Table 1: Typical system PHM OSA-CBM summary *Has a learning mode; **Is a learning mode

#1 DATA ACQUISITION Acquire sensor and system data 
#2 DATA MANIPULATION Extract the indicators - Acquire the context parameters 
#3 STATE DETECTION Build the prediction model** - Score the prediction errors  

#4 HEALTH ASSESSMENT 

Learn reference patterns (syndromes)** - Cluster according to references - 
Isolate the potentially degraded LRU(s) or module(s) through Bayesian 
calculation - Isolate the potentially degraded LRU(s) or module(s) through 
fault isolation manual on failure condition precursors 

Score global abnormality* 
Adjust the abnormality decision thresholds** 
Detect abnormality  

#5 PROGNOSTIC ASSESSMENT Predict the probability of maximal degradation before failure within a given 
operational time 

#6 ADVISORY GENERATION Establish a global diagnosis and prognosis merging other health monitoring 
means.

The PHM function section considered for maturation is part of level # 4 Health Assessment. It is tagged in 
table 1 with bold characters. The abnormality detection function considered here is based on global 
abnormality score threshold trespassing. On this general basis, two specific use cases are considered: 
– - Engine start capability, ESC (Ausloos et al. 2010 
– - Engine oil consumption, EOC (Demaison et al. 2010). 

2.2 Engine Start Capability function 
Engine start capability function, ESC, relies on a set of indicators (Figure 1) extracted during start 
sequence, sensitive to no start precursors. 

Figure 1: Engine start capability, ESC, indicators 

Some indicators are devoted to air supply degradations. Examples are the duration of phase 1 of the start, 
from starter air valve open command to ignition HP rotor speed, or, the average acceleration of HP rotor 
during phase 1. These indicators are sensitive to air starter valve slow opening. Such degradation is a 
precursor of valve stuck closed, which is a typical origin of no start. 
Some indicators are devoted to fuel metering degradations. Examples are phase 2 duration, from ignition 
to starter cut speed, or, Exhaust Gas Temperature slope during phase 2. 
Prediction error scores are centered and reduced residues between expected values of indicators and 
observed values of indicators.  
The expected values of indicators are estimations, through regression relations, using as inputs the other 
indicators and context parameters such as lubrication oil temperature at start. Referring to table 1, this is 
the basic PHM mode of “#3 – State detection - Score the prediction errors” 
The regression relations are learnt on start records with no degradations. The means and standard 
deviations of the residues needed for centering and reduction are learnt on the same records. Referring to 
table 1, this is the learning mode of “#3 – State detection - Build the prediction model”. 
The global abnormality score, ||Z||2, is the squared Mahalanobis norm of the vector, ε, of prediction error 
scores:

||Z||2 = ε T .ρ -1 . ε (1)

Referring to Table 1, this is the basic PHM mode of “#4 Health assessment – Score global abnormality” 
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The correlation matrix, ρ, is also learnt on the same records with no degradations. This is the learning 
mode of “#4 Health assessment – Score global abnormality” 

2.3 Engine Oil Consumption function 
Engine oil consumption function, EOC, relies on oil level extractions at taxi phase. The oil levels are 
captured at constant ground idle speed when the switch based level indication changes. A small correction 
of level is done according to temperature. 

Figure 2: Engine oil consumption, EOC, oil level captures 

The global abnormality score is the daily weekly or monthly consumption estimation on a daily increment. 
This relies on regressions on the oil levels versus flight time taking into account the oil fills. Referring to 
table 1, this is the basic PHM mode of “#4 Health assessment – Score global abnormality”. Unlike ESC, for 
EOC, this item has no learning mode. 

3. P(No degradation|Detection)
3.1 Definition 
As seen previously, the PHM function section considered for maturation in § 2.1 needs to be assessed and 
quantified. This is addressed through two Key Performance Indicators, KPI.
In commercial aeronautics, the major KPI for abnormality detection is an extension of the so called “No 
Fault Found” ratio, NFF. The original NFF ratio refers to failure detections which are false. The extended 
NFF ratio, considered in PHM, refers to degradation detections which are false. The degradations 
considered in PHM are failure precursors. The NFF ratio is defined as P(No degradation| Detection).
The line maintenance wishes to avoid “No fault founds”. For instance, a false detection of fuel metering 
degradation may lead to hydro mechanical unit replacement. This is eight hours manpower. Therefore, 
NFF ratios should not exceed 5% at line maintenance stage. High NFF ratios would kill PHM. 

3.2 Counterpart 
A second KPI CTQ CTB is the well known Probability Of Detection, POD. The POD is defined as 
P(Detection |Degradation).
For line maintenance the POD should be as high as possible under the constraint of low NFF ratio. For 
operations management, the abnormality detection should occur as soon as possible. For operations, NFF 
ratio is not as critical as for line maintenance. 
The popular Probability of False Alarm, PFA, P(Detection |No degradation), is linked to the two KPI CTQ 
CTB by the following relation:   (2) 

Figure 3: Diagram of PFA and POD for a decision based on threshold trespassing 
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With the type of decision considered, based on threshold trespassing, P(Detection| No degradation) is the 
probability of the global abnormality score with no degradation being higher than the abnormality decision 
threshold (Figure 3). 
For a typical P(Degradation) of 10-6 or 10-7 per decision, an expected NFF rate, P(No degradation| 
Detection), of 5 % and a POD, P(Detection| Degradation) of 90%, the PFA, P(Detection| No degradation),
should be 5.10-8 or 5.10-9 (Formula 2). 

3.3 Estimation 
The estimation of POD, P(Detection |Degradation), can be done by counting the global abnormality 
threshold trespassing when each different kind of degradation is simulated.  
The degradations are simulated rather than observed. The premise degradations typically occur with a 
probability of 10-6 or 10E-7 per engine flight. It would be necessary to cumulate more than 27.105 or 27 
million flights to observe this event at least thirty times with a probability of 90 %.  
The simulations are based on transformations of the degradation indicators values with no degradation. 
Such transformations are characterized by the degradation considered and the degradation intensity. 
Strong intensity corresponds to ultimate degradation level just before failure. This concerns line 
maintenance. At this level P( No degradation | Detection) should be less than 5%. Weak or mean intensity 
correspond to initiation of the degradation. This concerns operations. At this level 
P(Detection|Degradation) should be favored even though P(No degradation|Detection) reaches up to 50%. 
In ESC, simulations of degradations related to starter air supply were learnt with a phase 1 simulator 
based on torques balance. Simulations of degradations related to fuel metering were learnt on start tests 
records including fuel metering biases.  
In EOC, the over consumptions are simulated by drifts in mean of the consumption estimations. The 
estimation of the NFF ratio may be done through the following formula:  

 (3) 

 (4) 

P(Degradation) may be known through FMEA or field experience. P(No degradation) = 1-P(Degradation) is 
close to 1. 
As seen previously, the order of magnitude of P(Detection| No degradation) should be typically 5.10-8 or 
5.10-9 

Figure 4: Observed and adjusted cumulative distribution function of ESC global abnormality score with no 
degradation. 

As seen previously, P(Detection| No degradation) is the probability of the global abnormality score with no 
degradation being higher than the decision threshold (Figure 3). The estimation of such extreme level of 
probability needs some parametric adjustment of the distribution of the global abnormality score with no 
degradation. This requires modeling correctly the distribution tail of the global abnormality score with no 
degradation. It appears that the adjusted Gamma and Normal distributions do not fit well the observed 
distribution of the global abnormality score. Conversely, according to figure 4, the multi parametric 
adjustment obtained with Parzen estimator (Silverman, 1991) fits well the observed distribution (Hmad et 
al., 2011). 
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4. Abnormality decision thresholds adjustment
4.1 Methodology 
The first improvement proposed to reach an acceptable level of P( No degradation |Detection) is to adjust 
the abnormality decision threshold on the global abnormality score with no degradation. As seen 
previously, P(Detection| No degradation) is the probability of the global abnormality score with no 
degradation being higher than the decision threshold. Conversely, if the expected value of P(Detection| No 
degradation) is known, the adjustment of decision threshold may take advantage of the accurate Parzen 
fit. As a first guess of P(Detection| No degradation), formula 2 may be used with a prior assumption of 
P(Detection| Degradation) being close to 100 %. In a second iteration with the prior threshold, a more 
realistic estimation may be done for P(Detection| Degradation) (Hmad et al., 2012). 

4.2 Application to ESC 
This methodology is applied to ESC. A global abnormality score distribution is observed on starts with no 
degradations. 

Figure 5: Impact of the fit quality on decision threshold. 

Figure 5 shows the need to check the distribution fits. Figure 6 shows the initial performances of ESC with 
the Parzen threshold adjustment. 

Figure 6: Prior abnormality decision threshold and global abnormality score distributions with three starter 
air valve degradation intensities. 

Figure 7: Improvement of the performances with regression relations learnt on each specific engine and 
moving average of the global abnormality score 
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Only 20 % of the strong degradations are detected. This is not acceptable for line maintenance. None of 
the weak or mean degradations are detected. This is not acceptable for operations. 
The performances are improved with a moving average on the global abnormality score and the 
regression relations learnt specifically on each engine (Figure 7). This improves the accuracy of the 
indicator predictions. 
The performances become now acceptable for both line maintenance and operations. 

4.3 Application to EOC 
The methodology of threshold adjustment is now applied to Engine Oil Consumption. 

Figure 8: Prior abnormality decision threshold and daily consumption distributions with two over 
consumption levels 

For this PHM function, almost all mean and all strong over consumptions are detected. 

5. Conclusion 
The PHM sub function considered is abnormality detection based on threshold trespassing by a global 
abnormality score. For such function the No Fault Found ratio, NFF, P(No degradation| Detection) is 
relevant for line maintenance. The estimation of this performance indicator supposes to fit accurately the 
distribution of the global abnormality score with no degradation.  
To reach acceptable probabilities of detection at the specified NFF ratio three improvements are proposed 
for Engine Start Capability PHM function: 
- Abnormality decision threshold adjusted using extreme value quantiles on the global abnormality score 
distribution 
- Moving average of the global abnormality score  
- Regression relations learnt specifically on each engine.  
The first improvement is a novelty. It is successfully applied to both use cases considered. It is generic to 
all airborne system PHM functions based on abnormality scores. It is now being extended to other 
abnormality decision functions. 
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