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Failure prognostics being performed for any complex industrial system typically meets serious obstacles 
caused by uncertainty. This uncertainty actually has a hierarchical structure due to the peculiarities of its 
influence to the prognostics results. Namely, to quantify the chances of a system failure we normally have 
to apply probabilistic (non-deterministic) model. Such a model reflects the randomness and the diversity of 
the factors initiating a failure (the ‘first order uncertainty’). However the estimated probability of the failure 
may differ from its real value by the so-called ‘bias’. So the imperfectness of the probabilistic models 
becomes the source of the ‘second order uncertainty’. This means that the interval-valued probabilities can 
often describe the reality more adequately than single valued ones. 
The paper presents the novel approach to system life prognostics based on the usage of the interval-
valued statistical characteristics. The problem statement remarkably has many features similar to those 
considered in the classical publications on the theory of imprecise probabilities. Nevertheless the 
methodology used to find the prognostics result is very different and involves the technique from the 
optimal control theory. It relies on the state space representation of the system life cycle and Pontryagin’s 
principle of maximum modified to optimization problems with the integral and non-integral types of 
constraints. This novelty allows generalizing the ways to process additional information on the system 
reliability efficiently and makes the resulted intervals for the probability values tighter. In turn the decrease 
of the corresponding imprecision provides favorable conditions for justified decisions on the failure 
prevention, e.g. maintenance planning. 

1. First and second order uncertainties and system failure prognostics 
The probabilistic models have become the classical technique for treating uncertainties. To apply this 
technique to most practical problems we need precise information on the distributions of random factors 
and on the values of probabilities characterizing initiating events. When analyzing the possibilities of a 
system failure or industrial accident one normally deals with probabilities of finding the system in certain 
states and conditional probabilities of the system parameters changes due to the change in the system 
state. If some of the initial probabilities are unknown or imperfectly known we cannot expect to obtain an 
accurate result (e.g. probability of the system failure). Let us illustrate by an example. 
Consider gas transmission pipeline – an industrial system which proneness to failure (rupture) is 
influenced by a number of factors (third parties actions, corrosion, construction defects, land movement, 
etc.). Different combinations of these discretized factors will therefore produce specific states of the 
system. Each state i , ni  ,...,2 ,1 = , occurs with a probability )( iP  and is associated with the definite 

values of some parameter X  important for the failure identification. In the case of the gas pipeline one 
may think of the pressure drop in the pipe (Vianello and Maschio, 2011). 
Assume the range of X  values can be also discretized into the sequence of the ordered discrete values 

jx , mj  ,...,2 ,1= , and each jx  is associated with a probability )/( ijxP  given the condition of finding 
the system in the state i . Denote by ∗x  the critical value of X  such that the system failure is recognized 
as identified if X  exceeds ∗x . The failure probability can then be obtained directly from the total 
probability formula: 
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The expression (1) emphasizes that failure prognostics has to be done in the conditions of uncertainty, and 
involves consideration of random events (e.g. different states occurrences) and stochastic values of the 
parameter X . We may call it the ‘first order uncertainty’. 

At the same time the practical experience shows that real value R
fP  of the failure probability differs from 

fP  due to imprecision and incompleteness of initial statistical data which influence the accuracy of )( iP
and )/( ijxP . In fact ,*EPP f

R
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* EEE ∈  is the so-called ‘bias’ (Zio and 
Apostolakis, 1996). This bias reflects the ‘second order uncertainty’ and implies that instead of the point 
value for the failure probability (classical approach) we have to deal with R

fP  belonging to the interval 
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The expression (2) suggests that the interval-valued probabilities can provide better representation of the 
hierarchical uncertainty structure combining first and second order uncertainties than the point-valued 
ones. However the existing algorithms exploiting interval-valued probabilities have a number of 
disadvantages which become a ‘stumbling block’ for reliability applications (Kozine and Krymsky, 2009). 
We analyse the features of the approach based on the interval-valued probabilities and demonstrate the 
way in which it can be improved for practical needs. 

2. Interval-valued (imprecise) probabilities: typical problem statements 
Imprecise prevision theory (IPT) started by fundamental publications of Walley (1991) and Kuznetsov 
(1991) deals with exactly the uncertainty models containing interval-valued statistical characteristics. An 
important advantage of IPT is its capability to combine both statistical data and experts judgments when 
estimating the lower and the upper bounds on probabilities and other relevant characteristics. Such 
estimates can be obtained by solving problems of linear programming type without introducing additional 
assumptions on a probability distribution. 
Traditional IPT problem statement in one-dimensional case considers the following constraints: 
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Here )(tρ  is unknown probability density function (pdf) of the random variable T , outcomes of which 

belong to the interval ] ,0[ *T , )(tfi , ni  ,...,2 ,1 = , are given real-valued positive functions (so-called 

‘gambles’), +ℜ∈ii aa   , , ni  ,...,2 ,1 = , are given numbers. In reliability applications T  typically means 

time to failure. 

It is necessary to find the coherent lower and upper previsions )(gM  and )(gM  for expectation )(gM
of some other non-negative function (‘gamble’) )(tg  subject to constraints (3) and (4). In turn 
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In some practical applications (e.g. failure prognostics) the bounds of the intervals )]( ),([ gMgM
generated by traditional IPT methods, however, are not tight enough, so the resulted uncertainty is too 
high for providing justified decision support. The additional constraints can be introduced to reduce the 
width of the prevision intervals. 
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The first enhancement of the approach exploits an idea of restricting ourselves to the case in which the 
unknown pdf values are reasonably bounded by the definite positive number K  elicited from the expert 
judgments (Krymsky, 2006). Actually this requirement takes the form of inequality 

Kt ≤)(ρ , .1≤∗KT (6)

The inequality (6) allows excluding unbounded pdf’s (e.g. linear combinations of Dirac’s δ -functions) from 
the set of densities )(xρ  for which the expectation )(gM  attains its maximum or minimum. One can also 

require the derivatives of )(xρ  to be bounded (Kozine and Krymsky, 2009). Both bounded pdf’s and their 

derivatives give the possibility to make the bounds of the interval )]( ),([ gMgM  much tighter. 
The last enhancement is related to the problem statement which deals with the bounded failure rates 
(Kozine and Krymsky, 2012) and assumes that 

,)( λλλ ≤≤ t (7)

where ( ))(1/)()( tFtt −= ρλ  is the failure rate, +ℜ∈λλ   ,  are given numbers, )(tF  is cumulative 
distribution function (cdf): 

=
t

dtttF
0

.)()( ρ (8)

Thanks to the bounded failure rates, one can extend the interval of possible time to failure values till infinity 

( ∞→∗T ). Such a concept is significantly more adequate for representing the real situations as actually 
nobody a priori knows how long the system can work before the failure occurs. 

Note that the constraints (6) or (7) do not allow solving the corresponding optimization problems in the 
framework of the traditional IPT methodology based on linear programming algorithms (Walley, 1991; 
Kuznetsov, 1991). The crux is that we cannot convert the primal problem to a dual form as typically done 
when linear programming technique is applied. Namely, in this case the dual problem will contain an 
infinite number of variables. The appeared difficulty has been overcome by the application of variational 
calculus methods (Krymsky, 2006; Kozine and Krymsky, 2009, 2012). 
The obtained results confirm that the accuracy of reliability interval assessments has been improved if the 
constraints (6) or (7) are utilized. However the approach has not been sufficiently generalized yet. In 
particular, it cannot operate with constraints of the types (6) and (7) simultaneously. In this paper we 
continue development of the approach taking into account that the models under investigation are very 
similar to those considered within optimal control theory (Pontryagin et al, 1962; Hestenes, 1966). 

3. Interval probabilities and optimal control model 
The control models are used to study the system dynamics which is usually described by the differential 
equations in a state space form (Brogan, 1991): 

( )ttutxtxtxdttdx rll ),(),(),...,(),(/)( 21ϕ= , . ,...,2 ,1 rl = (9)

Here )(tu  is control (input) signal, )(txl , )(•lϕ , rl  ,...,2 ,1= , are state space coordinates and given 
functions respectively. In failure prognostics one has to consider two functions which interrelations 
correspond to the differential equation – pdf and cdf. Denote )()( ttu ρ= , )()(1 tFtx = . Then 

( ) ).( ),( ),(/)( 111 tuttutxdttdx == ϕ (10) 

Each curve in the Cartesian plane (Figure 1) reflects a possible relation between )(1 tx  and )(tu  when 

time t  changes from zero to *T . These curves are graphical trajectories of a system life cycle. A 
particular curve starts at some point on Y-axis when 0=t  and continues in the ‘left-to-right’ direction (as 

the derivative )(tu  of )(1 tx  is non-negative only if )(1 tx  is a non-decreasing function). When ∗→ Tt  the 
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trajectory attains its terminal point located at the vertical line for which 1)()( **
1 == TFTx  (Figure 1). The 

situation in which ∞→∗T  is also allowed as the so-called ‘infinite horizon control’ (Carlson et al, 1991). 
Most types of constraints can be visualized in the same plane. For instance, the bounded pdf (6) requires 
the existence of a horizontal line Ktu =)(  (Figure 2). The bounds on the failure rates introduced by the 
inequalities (7) are depicted by the straight lines described by the linear algebraic equations 

( ))(1)( 1 txtu −= λ  and ( ))(1)( 1 txtu −= λ . As the result only the trajectories lying inside the area 
bounded by the aforementioned straight lines (Figure 2) satisfy the constraints (6) and (7). 

Figure 1: trajectories of the system life cycle in the 
Cartesian plane

Figure 2: trajectories of the system life cycle in 
case of bounded pdf and failure rate

We aim at seeking the control functions )(tu  and the corresponding system life cycle trajectories for which 

the expectation )(gM  attains its maximum (minimum) subject to constraints (3), (4), (6), (7). This 
optimization problem includes various types of constraints. In particular, expressions (4) represent so-
called ‘isoperimetric’ constraints (they set the bounds on integrals depending on )()( ttu ρ= ). On the 
contrary (3), (6) and (7) belong to the type of ‘holonomic’ (non-integral) constraints. 
The solution of the formulated optimal control problem can be obtained via application of the principle of 
maximum (Pontryagin et al, 1962). Its modification to the case of combined isoperimetric and holonomic 
constraints was developed by Hestenes (1966). We introduce the following notation: 
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where ),...,,( 221 nbbb=b  is the vector of control parameters. 

Assume the optimal solution of the formulated problem is )()( tutu ∗= , )()( 11 txtx ∗= , ∗= bb .
Then according to the results of optimal control theory (Hestenes, 1966) there exist the functions 
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in which ) ,..., ,( 1221 += nμμμ  is the vector of multipliers, 
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such that the following relations hold: 
(a) The multipliers kμψ  ,0 , 12 ,...,2 ,1 += nk , are constant; 00 ≥ψ  and  ,0≥kμ 12 ,...,2 ,1 += nk , with 

( ) 0)( , ),( ),(
0

***
1 =+

∗

∗
T

kkk Sdtttutxh bbμ , 12 ,...,2 ,1 += nk . (14) 

(b) The multipliers )(tjν , 4 ,3 ,2 ,1=j , are piecewise continuous and are continuous over each interval of 

continuity of )(* tu . Moreover for each 4 ,3 ,2 ,1=j  we have 

0)( ≥tjν , ( ) 0 , ),( ),()( 1 =∗∗∗ ttutxt jj bξν . (15) 

(c) The multiplier )(1 tψ  is continuous and satisfies the adjoint equation 

( ) ( ) .   ),( , , ),( ),(//)( )()(x1111
11 txttttutxHxdttd ∗=

∗∗∂∂=− b ψψ (16) 

Note that in our case 0/)(1 =dttdψ , so constt == 11 )( ψψ .
The maximum principle is stated by the inequality 

( ) ( )bb  ),( , , ),( ),( ),( , , ),( ),( 1111 tttutxHtttutxH ψψ ∗∗∗∗∗ ≥ (17) 

which holds for all Attutx ∈∗∗ ] , ),( ),([ 1 b , where A  is the set of acceptable solutions. 
The maximum principle implies that 
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Analyzing equation (18) subject to (12) – (16) one can conclude that the optimal pdf consists of some 
intervals of continuity, and at each interval either pdf equals K  or the failure rate )(tλ  equals λ  or λ .

4. Example 

Assume we are interested in knowing bounds τ  and τ  on the mean time to failure 

( )
∞∞

−==
00

)(1)( dttFdtttρτ (19) 

of a system and the following constraints are known: )(tλλ ≤ , Kt ≤)(ρ , K<λ  and 

.)()(1)(
0

],0[ pdtttIqR q =−=
∞
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Here )(qR  is system reliability at time q ,  equals 1  if  or equals 0  otherwise. 

The pdf )()()1( ttu ρ=∗  for which τ  attains its minimum τ  contains two intervals of continuity: 

Ktu =∗ )()1(  if 1tt ≤  and ( ))(exp)1()( 11
)1( ttKttu −−−=∗ λλ  if 1tt > . This yields 

)/1)(1(2/ 11
2
1 λτ +−+= tKtKt . In turn 1t  can be found as the root of the equation 

( ) ptqKt =−−− )(exp)1( 11 λ .

The pdf )()()2( ttu ρ=∗  for which τ  attains its maximum τ  contains three intervals of continuity: 

)exp()()2( ttu λλ −=∗  if 2tt ≤ , Ktu =∗ )()2(  if qtt ≤<2  and ( ))(exp)()2( qtptu −−=∗ λλ  if qt > . This 

)(],0[ tI q ],0[ qt ∈
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leads to the result )/1(2/)()exp()/1(/1 22
22 2

λλλλτ ++−+−+−= qptqKtt . In turn 2t  can be 

found as the root of the equation ( ) pttqK =−−− )exp()(1 22 λ .
Now we compare the obtained results with the solutions to the corresponding traditional IPT problem in 
which we impose no restrictions for the upper bound on pdf and the lower bound on failure rate. In fact, a 
priori information can be incorporated in traditional problem statement only in the form of Equation (20). 
Applying the methods of linear programming to the discussed traditional problem one can estimate the 
lower bound on mean time to failure as qptrad =τ .

Suppose 1 0001.0 −= hλ , 1 0008.0 −= hK , hq  700=  and 9.0=p , then htrad  0.630=τ , ht  3.461 = ,

h 9.674,9=τ  and htrad  9.044,9)( =−=Δ τττ . The obtained difference indicates that the lower bound on 

mean time to failure moves to the right when additional constraints are utilized. In turn the difference 
τττ −=Δ trad)( , where h 8.697,9=τ , will be arbitrarily large as ∞→tradτ  yielding more accurate 

estimate for the upper bound on mean time to failure. Hence the bounds of the resulting interval ] ,[ ττ
become significantly tighter than those of the interval ] ,[ tradtrad ττ .

5. Conclusions 
Interval-valued probabilities are applied to quantifying the uncertainty within the failure prognostic 
procedures as they adequately reflect the lack of knowledge in the initial data. However the resulting 
intervals for the statistical characteristics of the system are often too wide for obtaining an accurate failure 
prognosis. This drawback can be overcome by introducing additional constraints (e.g. bounded probability 
densities, bounded failure rates) mostly based on expert judgments. The crux is that such an approach 
does not allow solving the corresponding problems by the linear programming methods as it has been 
done in the traditional theoretical studies. In this paper we have proposed and developed an alternative 
approach that exploits the methods of optimal control theory, and demonstrated its applicability. 
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