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In this work, we consider two practical situations with different information available, concerning the 
prediction of the Remaining Useful Life (RUL) of a creeping turbine blade for which a sequence of 
observations of the creep strain level is available. In the first case considered, we have available a 
stochastic model of the creep growth process and we know the value of the failure threshold, i.e., the 
maximum creep strain level beyond which the blade cracks. On this basis, a Monte Carlo-based filtering 
technique, called particle filtering, is set-up to predict the distribution of the system RUL and online-update 
it when new observations are collected. In the second case considered, the only available information is 
the sequence of observations of the creep strain of the blade of interest and the value of the failure 
threshold. On this basis, a data-driven method, based on an ensemble of bootstrap models, has been 
developed to estimate the turbine blade RUL and the uncertainty of the estimate caused by the uncertainty 
in the data, the variability of the blades behaviour and the imprecision of the empirical model. The two 
approaches are evaluated in terms of the assumptions they require and the accuracy of the RUL 
predictions they provide. The ability of providing measures of confidence in the outcomes is also 
considered. 

1. Introduction 
Different forms of information and data may be available for prognostics; depending on that, different 
prognostic methods may be applied. In this work, we consider two practical situations about prognostics of 
the creep growth process in the turbine blades of a Gas Turbine Modular Helium nuclear Reactor (GT-
MHR) simulated by a stochastic model based on the Norton law (Baraldi et al., 2013). For each situation 
considered, an accurate and robust prognostic method is proposed.  
In general, prognostic methods can be classified in model-based and data-driven (Brotherton et al., 2000). 
Model-based methods use an explicit mathematical model of the degradation process to predict the future 
evolution of the degradation state and, thus, the RUL of the system. In practice, even when the model of 
the degradation process is known, the RUL estimate may be difficult to obtain, since the degradation state 
of the system may not be directly observable and/or the measurements may be affected by noise and 
disturbances. In these cases, model-based estimation methods aim at inferring the dynamic degradation 
state and provide a reliable quantification of the estimation uncertainty on the basis of the sequence of 
available noisy measurements. In the first case considered in this work, hereafter referred to as case 1, we 
have available a stochastic model of the creep growth process based on the Norton law and we know the 
value of the failure threshold, i.e., the maximum level of deformation beyond which the blade cracks. Also, 
a sequence of direct observations of the degradation of the blade, measured by its creep strain, is 
available. On this basis, model-based approaches are suggested. Many approaches rely on Bayesian 
methods: due to its flexibility and ease of design, a numerical approximation of the Bayesian estimate 
based on the Monte Carlo sampling technique and called particle filtering, is set-up in this work to predict 
the distribution of the system RUL and online-update it when new observations are collected (Baraldi et al., 
2013).  
On the other side, data-driven methods are used when an explicit model of the degradation process is not 
available, but sufficient historical data have been collected. These methods are based on statistical models 
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that ‘learn’ trends from the data. Recently, ensemble approaches, based on the aggregation of multiple 
model outcomes, have been introduced due to the superior robustness and accuracy with respect to single 
models and the possibility of estimating the uncertainty of the predictions (Baraldi et al., 2012), (Baraldi et 
al., 2013). In this work, we consider a situation, hereafter referred to as case 2, in which only the sequence 
of direct creep strain measures for the blade of interest is available and the value of the failure threshold is 
known. On this basis, an ensemble of bootstrap models is built to estimate the system RUL and the 
uncertainty of the estimate, caused by the uncertainty in the data, the variability of the system behaviour 
and imprecision of the empirical model. 
The remainder of the paper is organized as follows: in Section 2, the problem of blade creeping in high 
temperature turbines is illustrated, the sources of information for prognostics discussed, and the two cases 
considered as well as the objectives of the prognostic activity are presented; in Section 3, the prognostic 
methods developed to tackle the two prognostic cases are described; in Section 4, results are discussed; 
finally, in Section 5 some conclusions are drawn and potential for future work suggested. 

2. Creep Growth Case Study 
Creep is an irreversible deformation process affecting materials exposed to a load below their elastic limit 
for a protracted length of time and at high temperature. A turbine undergoing this degradation process can 
experience the loss of its blades, one of the most feared failure modes of turbomachinery since it is 
accompanied by abrupt changes in the power conversion system and in the reactor flow conditions (Saez 
et al. 2006).  
The uniaxial creep deformation consists of an augmentation of the original length, and a reduction of the 
diameter. In this work, the dimensionless quantity , defined as the percentage of elongation of the turbine 
blade in the longitudinal direction with respect to its original length, is considered as measure of the creep 
strain. Traditional methods for predicting creep life, based on the extrapolation of some creep constitutive 
equations from accelerated tensile creep tests, are very useful during the design phase, but are not 
enough accurate for blade health monitoring during operations (Penny and Marriott, 1995). 

2.1 Information and data for prognostics 
The main sources of degradation-related information for the creep growth process, listed in Table 1, are 
further detailed in this Section (Baraldi et al., 2013).  
Information a: Creep growth model. Creeping in turbine blades is a stochastic degradation process which 
can be modeled using the Norton Law assuming that the dependence from the temperature follows the 
Arrhenius law. Moreover, for  sufficiently small (here  days, with respect to the time horizon of 
several thousand), the Norton Law can be discretized to give (Baraldi et al., 2013) 

exp (1)

where  is the creep strain at time ,  is the activation energy,  and  are material inherent 
characteristics varying from one blade to another,  is a constant relating the load to the rotational speed 

, is the ideal gas constant, is the blade operating temperature, and  is a random variable 
modeling the fluctuations in the stress applied to a specific blade, which are due to fabrication defects, 
aging and corrosion of the blade, vibrations of the system or turbulences of the gas flow. The values of the 
parameters , , and have been set as in Baraldi et al. (2013) with reference to the helium gas turbine 
of a Gas Turbine Modular Helium nuclear Reactor (GT-MHR). 
Information b: creep strain measurements. This source of information consists in a sequence of 
observations  of creep strain, hereafter called ‘test trajectory’, performed on the blade of interest. Given 
the unavailability of real experimental data, in this work the creep growth trajectory is simulated using Eq. 
(1) and following the procedure described in Baraldi et al. (2013). A total number of 87 creep strain 
measurements have been obtained for a turbine blade by adding a white Gaussian noise with standard 
deviation  to the simulate creep strain value .

Information c: Failure threshold. The failure threshold for creep strain  is set equal to the value of 1.5%.  
Information d: Measurement equation. Since it has been assumed that the value of the creep strain is 
directly measured with sensor noise , the observation equation is: 

(2)
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Table 1. Main sources of information for creep growth prognostics 

Source Description of the source of information Mathematical representation 

a The creep growth model and the distributions of the 
model parameters Eq. (1) 

b 
Measurements of the creep strain of the currently 
creeping blade taken at  different time instants  

c The value of the failure threshold   
d The measurement equation and the noise distribution Eq. (2) and 

2.2 Two prognostic cases with different sources of information 
By differentiating the source of information available, two cases are considered. In both cases a set of 
measurements  collected during the life of the turbine blade of interest (source of information b) is 
available in combination with other different sources of information (Table 2). 
In case 1, the physical model of the creep growth process (Eq. 1) is known, as well as the distribution and 
evolution in time of all its characteristic and external parameters (Table 1, source a). Other sources of 
information available are the value of the failure threshold  (source c) and the measurement equation 
(source d), linking the observations with the creep strain (Eq. 2). In case 2, the information available is 
limited to the value of the failure threshold  (source c).

Table 2. Information available in each prognostic case considered 

Case Source of information 
 a b c d 
1 X X X X 
2  X X

Aim of the work 
The aim of this work is to use the information available for estimating the RUL of the degrading turbine 
blade, i.e., the time left from the current time  before its creep strain crosses the failure threshold .
Since the evolution of the creep is intrinsically random, the blade RUL at time  is a random variable, 

, and, thus, the objective of applying a prognostic method to a blade whose current creep strain is 
is to estimate the probability distribution  of . Notice that the uncertainty described by this 
distribution regards the future stochastic evolution of creep degradation and thus is irreducible.  
In practical cases, the current degradation level  and the degradation model can be not exactly known. 
Thus, due to the limited information available, one is interested in:  

• The expected value of ;
• The variance of the prediction error , as a measure of the accuracy with 

which the estimated expected value, , predicts the actual RUL value, .
The contributors to the uncertainty of the prediction  can be classified in the following three categories 
(Baraldi et al., 2013): 

A. Variability in the future creep strain rate, mainly due to the unforeseen future values of the blade 
load , and temperature ;

B. Inaccuracy of the prognostic model used to perform the prediction;  
C. Sensor noise affecting the measurement  of the current degradation level, which is fed in input 

to the prognostic model. 
It can then be useful to decompose the error variance  of the model prediction  in three terms: the 
process uncertainty , the model uncertainty , and the noise uncertainty  (Baraldi et al., 2013). To 
this aim, introducing the quantity  which represents the expected value of  for a degrading 
equipment for which at time we have the observation , and assuming that the prognostic model is an 
unbiased estimator of , we obtain: 

(3)
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3. Modeling approaches 
This Section illustrates the two modeling approaches undertaken to cope with the two prognostic cases 
outlined in Section 2.2 (Table 2). 

3.1 Particle Filtering (Case 1) 
In case 1, at time , the stochastic creep dynamic model (Eq. (1)), the observation equation (Eq. (2)), the 
sequence of  measures  of creep strain and the value of the failure threshold  (i.e., sources of 
information a, b, c and d) are available.  
In this setting, it is possible to predict, within a Bayesian framework, the filtered posterior distribution 

 of the blade RUL at time  given the observations  collected up to time  by a recursive 
computational procedure divided into successive prediction and update stages. In the creep growth 
process, since the combination of speed, temperature and stress fluctuations described by Eq. (1) entails 
a non-Gaussian noise, the exact computation of  involves the solution of an integral which 
does not have, in general, a closed-form solution. Then, a numerical approximation based on Monte Carlo 
sampling, the particle filtering method, has been applied in this work for its flexibility and ease of design. 
The particle filtering technique provides a solution to the prognostic problem by approximating the integrals 
in the Bayesian recursive procedure with weighted summations over a high number of samples called 
particles (Cadini et al., 2009).  
A number  of particles, representing degradation trajectories, are built by sampling for each of 
them the characteristic parameters  and  from their distributions and then recursively sampling the 
particle degradation level  at time according to Eq. (1), until the failure threshold  is exceeded and 
the duration of life  of the particle recorded. When an observation  is collected, each particle is 
assigned a weight  proportional to the likelihood  of observing  given the degradation level 
the particle has reached. The weighted average and the weighted standard deviation of the particle RULs 
at time  represent the prediction  of the expected value  of  and the estimate  of the 
prediction error variance, , respectively. For further details on this method, the interested reader is 
referred to Baraldi et al. (2013). 

3.2 Data-driven ensemble of bootstrapped models (Case 2) 
This case is characterized by the availability of the sequence of creep strain measurements  for the 
blade of interest and the value of the failure threshold  (i.e., sources of information b and c). In this case, 
the prognostic model has been developed only after time  in order to have available a dataset 
of at least  direct creep strain measurements. 
The solution proposed, in this context of available information, is to develop an empirical model of the time 
evolution of the creep strain  on the basis of the sequence of past creep strain measurements .

The predicted failure time is then given by the time at which the degradation will exceed the known 
degradation threshold . In principle, linear regression methods could be applied to derive a model 

. However, they usually do not allow estimating the process uncertainty . Furthermore, the 
bootstrapped ensemble approach is here preferred for estimating the model uncertainty  due to the fact 
that it can be extended to more complex non-linear problems. To this purpose, the bootstrap method 
described in Baraldi et al. (2013) is applied. 
The general idea is to partition the set of creep strain measurements  into two non overlapping datasets 
of consecutive measurements  and . According to the bootstrap method, H different linear models 
are built using the training dataset  and aggregated by averaging their outcomes to obtain the single 
prediction  of the blade RUL at time . With respect to the estimate of the error variance 

, the variance of the outcomes of the ensemble provides the estimate of , whereas the remaining 
terms  are estimated by building a model  of the errors made by the bootstrap ensemble model 
when used to predict the time  needed to obtained the creep strain increments 
observed in the validation dataset . The output of model , in correspondence of the creep strain 
increment  needed for the blade to reach the failure threshold, provides the estimate 
of the variance component  of the error made in predicting .
Notice that the data used for training model  concern creep strain increments which for a large part of the 
creep growth trajectory are smaller than the increment  considered for obtaining the prognostic 
results, so that the empirical model  is used in an input region not described by the training data. This 
represents a limit to the quality of the estimate , since, in general, the performance of empirical models 
are best when they are applied to input regions well described by the training data, and degrade away 
from these regions.  
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4. Results 
Table 3 reports the true information about the RUL of the simulated turbine blade under test, at two time 
instants  days and  days; row 3 reports the true RUL value, , observed for the 
turbine blade under test, whereas rows 4 and 5 report the expected value  and the prediction error 
variance component  which corresponds to the variance of the distribution  and represents 
the irreducible uncertainty of the RUL prediction caused by the stochastic future evolution of the creep 
strain.  has been obtained by simulating degradation trajectories all characterized by 
the values  and  of the blade under test and by the creep strain level  at time .
Table 4 reports the corresponding estimates  of the RUL expected value and of the prediction 
error standard deviation, obtained by applying the two prognostic approaches to the same degrading 
blade. Columns 3 and 4 refer to the RUL predictions performed at time  days on the basis of the 
measurements z1:50 of the test trajectory, and at time  days on the basis of the measurements ,
respectively.  

Table 3. Creep propagation in the simulated turbine blade under test 

Parameter Description Values [d] 
Time of the prediction 1475 2375 
RUL value at time ti 1110 210 
Expected value of RULi given a creep strain value i at time ti 1092 264 
Standard deviation of RULi 90 42 

Table 4. Creep propagation estimates for the turbine blade under test 

Case Parameter Description Values [d]
1  Estimate of the expected value of RULi 1085 247 
  Estimate of the prediction error standard deviation 107 45 
2  Estimate of the expected value of RULi 1075 248 
  Estimate of the prediction error standard deviation 238 57 

Notice that the  predictions of the two approaches provide satisfactory estimates of , whereas in 
both cases the prediction error variances  is larger than . This is due to the fact that, as explained in 
Section 2.2,  takes into consideration both the uncertainty  due to the future stochastic evolution of 
the test trajectory, the uncertainty  due to the regression error of the prognostic model, and the 
uncertainty  due to noise on the input data. It is interesting to observe that an analyst who has to decide 
the maintenance policy to be applied to the turbine blade would like to have the least uncertain prediction 
of the RUL. Thus, in the case in which the analyst were in the position to choose one of the two prognostic 
approaches, he/she would prefer the one whose prediction error variance is smaller. 
In correspondence of each prediction , it is also possible to estimate the prediction interval 

, i.e., the interval expected to contain the true RUL value  with a probability of .
According to the two approaches, this interval can be obtained as follows: 

• In case 1,  and  are the  and  percentiles, respectively, of the RUL 
distribution estimated with the particle filtering method. 

• In case 2, assuming that the prediction error has a Gaussian distribution, the value of  and 
 can be computed as (Baraldi et al., 2013): 

inf/sup (4)

where  is the percentile of a Student’s t-distribution with number of degrees of freedom equal 
to the number  of bootstrap models. 
Figure 1 shows the evolution of the true value of the blade RUL (continuous line), its estimated value 
(dots) and the corresponding prediction interval for  (dashed line) obtained during the turbine 
blade life at times ,  for case 1 and  for case 2. Notice that in the latter case the 
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prediction intervals are characterized by large oscillations and low accuracy, especially at the beginning of 
the trajectory, i.e., when few training data are available. Furthermore, the RUL prediction itself is very 
noisy. 

Figure1. true RUL (continuous line) of a turbine blade with its predicted value  (dots) and prediction 
interval (dashed line) for case 1 (left) and case 2 (right) 

5. Conclusions 
In this work, we have considered two practical situations with decreasing amount of information available, 
concerning the prognosis of the RUL of a creeping turbine blade: in the first case the model of the creep 
growth process is available, in the second case the model is not available but can be empirically derived 
from a number of direct measurements of the creep strain reached during the life of the blade.  
Guidelines about how the prognostic problem should be tackled have been given for both cases, and a 
bootstrap ensemble-based technique has been proposed and developed to estimate the uncertainty of the 
RUL prediction in those situations where a priori knowledge of the mechanisms and models of the 
degradation process is missing (case 2). 
The results obtained in the prognostics of turbine blades show that both the particle filter and the bootstrap 
ensemble methods provide a reliable prediction of the system RUL with a quantification of its uncertainty, 
although the particle filter provides less uncertain predictions. 
With respect to the ensemble of bootstrapped models trained using only a sequence of direct creep strain 
measurements for the blade of interest, it has been observed that the approach requires building an 
empirical model for the estimate of the prediction variance which is then used outside the region covered 
by the training data. Although good extrapolations have been obtained in the linear creep growth case 
study, the feasibility of the approach on more complex models should be verified. 
Finally, future research will consider other possible sources of uncertainty in the information available such 
as the imperfect knowledge of the degradation model or the uncertain definition of the failure threshold 
value.
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