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Wiener process with a linear drift has been extensively studied in degradation modeling, mainly due to the 
existence of an analytical expression of the first hitting time distribution which permits feasible 
mathematical developments. However, a fundamental problem related to the stationary Wiener process is 
that it can only describe linearly drifted diffusion processes. This article is devoted to characterizing 
degradation phenomena with non-stationary Wiener processes. A new treatment is initiated to characterize 
the efficiency of imperfect maintenance, i.e., extending the improvement factor method on the degradation 
rate function. A stochastic filtering technique is employed to dynamically update the estimate of the 
degradation rate. A numerical example is given to illustrate the potential applications in real practice. 

1. Introduction 
Degradation modeling serves as an efficient modus operandi to evaluate reliability and to predict failure 
events for some highly reliable systems of which the event data are scarce. In the context of degradation 
modeling, massed degradation measurements can be recorded on each individual within a population, 
eliminating the necessity to wait until failure to obtain event data. Early work on degradation modeling is 
referenced by Ray and Phoha (1999), while more recent results are mentioned by Elwany et al. (2011) and 
Zio and Di Maio (2012). Wiener process with a linear drift is a widely used mathematical tactic to 
characterize degradation phenomena. A Wiener process  with drift coefficient  and variance 
parameter  can be formulated as ,, where  is the standard Brownian motion. 
Wiener process with a linear drift has stationary, independent and normally distributed increments, i.e., for 
all ,  is independent of  and has normal distribution . The 
stationary Wiener process has mathematical advantages in that the distribution function of the first hitting 
time can be formulated analytically, known as the inverse Gaussian distribution. However, this statistical 
process is inadequate in modeling non-linearly drifted diffusion processes. Non-linearly drifted diffusion 
processes exist pervasively in practice (Bian and Gebraeel 2012, and Son et al. 2013), while a rather 
limited amount of research has been done on non-linearly drifted diffusion processes. This article 
investigates a maintenance strategy under which non-stationary Wiener processes are utilized to 
characterize degradation phenomena. We say that  is a non-stationary Wiener process with drift 
function  and variance parameter  if , where  is a non-linear, right-continuous, 
real-valued function on   with .  has independent, non-stationary and normally 
distributed random increments, i.e., for all , the random increment  is independent of 
and has normal distribution . Apparently, the non-stationary Wiener process 
reduces to the stationary Wiener process with  being a linear function in .

Compared with the As Good As New and As Bad As Old assumptions on maintenance efficiency, it is 
more realistic in true experience that maintenance actions merely restore a system condition to 
somewhere between As Bad As Old and As Good As New. This situation is known as the imperfect 
maintenance. Extensive research on imperfect maintenance has been documented; see Wang (2002) and 
Lindqvist (2006) for a recent review on various treatments. One of the most popular treatments on 
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imperfect maintenance is the improvement factor method in which each imperfect maintenance changes 
the system time of the failure rate curve to some newer time but not all the way to zero (not new); see 
Pham and Wang (1996). By assuming that the underlying deteriorating process conforms to the non-
stationary Wiener process , starting from the installation of a new system, the expected 
degradation up to time  is . Therefore, the first-order derivative of , , can be treated 
as the degradation rate function of the underlying deteriorating process. The concept of the improvement 
factor method can be extended to the degradation rate function  to accessing maintenance efficiency. 
Specifically, we assume that the degradation rate function , starting from the installation of a new 
system, changes into  once an imperfect maintenance is released at time . Here 

 is an age-reduction factor, and  is a degradation-rate-increase factor. Evaluating 
maintenance efficiency via degradation rate function instead of hazard rate function has a main advantage 
in that deriving the hazard rate function via the first hitting time distribution function is mathematically 
intractable, especially having introduced the non-linear drift function. 

Another distinguishing feature of the proposed maintenance strategy is the utilization of a stochastic 
filtering technique to dynamically update the degradation rate function, once a new piece of monitoring 
information is obtained. The bulk of the documented research on the improvement factor method 
postulates a constant age-reduction factor and a constant hazard-rate-increase factor during a system's 
whole operational life cycle. Nevertheless, the assumption of constant improvement factors will be 
inappropriate and problematical in many circumstances. Intuitively, as the operational condition varies 
wildly, each maintenance action has a different degree of impact on the degradation rate. By invoking the 
stochastic filtering technique, we can dynamically access the maintenance efficiency and better predict the 
degradation trend. Diagnosis, cost models and the use of state space models are common in the field of 
condition monitoring (CM), as is usually found in the literature; see Ece and Basaran (2011) and Wang and 
Wang (2012). 

The remainder of this paper is organized as follows. Section 2 develops the framework of degradation 
modeling using a stochastic filtering technique. A simulation study is given in Section 3 to illustrate the 
applicability and ascendency of the advanced strategy. Section 4 concludes the paper and points out 
possible topics for future research. 

2. Model formulation 

Non-stationary Wiener process  with drift function  and variance parameter  has 
independent and normally distributed increments. Define random variable  to be the first hitting time of 
the degradation process  to failure threshold , which is a pre-determined constant. The 
analytical form of the first hitting time distribution function of the non-stationary Wiener process can be 
obtained in very few cases, e.g., Buonocore et al. (2011). Si et al. (2012) developed a closed-form 
expression approximating the first hitting time distribution function for the non-stationary Wiener process 
under some mild assumptions, and the results will be employed in this paper. In order to illustrate the 
proposed maintenance strategy, we assume that the drift function in the non-stationary Wiener process is 
formulated to be , with  and . The probability density function of the first hitting time 
can be approximated by 

Preventive maintenance is assumed to be imperfect. CM checking points are regularly arranged with 
identical interval , i.e., the system will be checked at epochs  Upon each checking 
epoch , CM information  is obtained instantly, and the inspection duration is negligible. 
Having obtained the CM information, engineers have to decide whether or not to take preventive 
maintenance at the checking point . (We will not study how the maintenance decision is made.) To 
simplify matters, we assume that if an imperfect maintenance is released at epoch , the degradation rate 
function immediately after the maintenance action changes from  into . Here  is the 
degradation-rate-reduction factor, and we do not consider the age-reduction factor. By re-writing 

as , where , it is equivalent to the statement that the value of the scale 
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parameter immediately after the maintenance action changes from  to . To access the degradation rate 
at each checking point, it is sufficient to estimate the scale parameter in the degradation rate function at 
each checking point. We develop an updating procedure, i.e. the Kalman filter, for recursively estimating 
the scale parameter (i.e., the degradation rate) at each checking point. The Kalman filter is an effective 
approach for discrete-time state estimation, and its applications have been extensively reported in 
operations research; see Si et al. (2011) for a recent review. 

Particularly, by denoting  to be the hidden value of the scale parameter at the th inspection epoch 
before any maintenance action and  to be the CM observation at the th inspection epoch, we have 
process equation 

and measurement equation 

where  denotes the degradation increment at each checking point and . The 
measurement noise is assumed to be zero mean Gaussian white noise with variance , i.e., 

. The linear relationship between the state variable, , and the measurement, , and the 
normal assumption on the measurement noise are rooted in the non-stationary Wiener degradation 
process.  The linear relationship between two consecutive states is rooted in the improvement factor 
method on the degradation rate function. To characterize the variability in the maintenance efficiency, we 
assume that the degradation-rate-reduction factor  is a random variable following normal 
distribution . Therefore, if no maintenance action is released at the th checking point, we 
have  and ; and if an imperfect maintenance is released at the th checking point, we 
have   and . For notational convenience, we say that the process noise is 
assumed to be zero mean Gaussian white noise with variance , i.e., .

At the th checking point, we define  to be the a prior estimate of the scale parameter, , given 
knowledge of the degradation process and maintenance history prior to (excluding) the th checking point 
and  to be the a posterior estimate of the scale parameter given new measurement . By restricting the 
optimal estimate, , to be a linear combination of the a prior estimate, , and the degradation increment, 

, and by setting the cost function to be the mean-square error, we arrive at the Kalman filter. Define  to 
be the a prior error covariance matrix and  to be the a posterior error covariance matrix at the th
checking point. For ,  and  are chosen arbitrarily, reflecting our best assessment about the scale 
parameter prior to any CM information. For , the recursive estimation of the scale parameter 
entails the following updating equations: 

• state estimate propagation 

• error variance propagation 

• Kalman gain 

• state estimate update 

• error variance update 

Consequently, the updated estimate and variance of are given by, respectively, 
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3. A numerical example 

To demonstrate the application process and the performance of the proposed algorithms, a simulation 
study was conducted. The simulated degradation measurements  are generated as 
follows. At the first checking point, we randomly simulate an observation , which follows a normal 
distribution . If an imperfect maintenance is then released at the first checking point, the 
scale parameter immediately after the maintenance action changes to . Here,  is a random variable 
following normal distribution . Therefore, at the second checking point, we randomly simulate a 
degradation increment  from normal distribution . If no maintenance is taken at 
the first checking point, at the second checking point we randomly simulate a degradation increment 
from normal distribution , and the second degradation measurement is .
By analogy, at the th checking point, , we randomly simulate a degradation increment  from 
normal distribution , and the th degradation measurement is 

. Here  is an indicator function: if an imperfect maintenance is released at the th checking 
point we have , and if there is no maintenance action at the th checking point we have .

To demonstrate the competence of the proposed degradation-modeling strategy, we use in this section the 
following data set:  and . To start with, 
we need to give the initial values, which are specified as follows: , . In this paper, the value 
of the indicator  is generated randomly, with  for all . We use the Kalman 
filter to dynamically update the scale parameter . To visually demonstrate the competence of the 
proposed degradation modeling strategy, we plot the deviation  in Figure 1. As can be seen, the 
estimate converges rapidly as the CM points  increases. Figure 2 plots the filter gains , showing that the 
filter gain converges as well. 

 
Figure 1:  converges to zero as  increases. 
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Figure 2: Filter gain converges to zero as  increases. 

To show the robustness of the algorithm, we run the simulation for 100 times and plot the deviations 
, with sample size being 100, in Figure 3. In Figure 3, all the deviations 

converge rapidly to zero, showing the efficiency of the stochastic filtering algorithm in assessing the scale 
parameter. 

Figure 3: Evolution paths of  with 100 samples. 

4. Conclusion 
This study has developed a degradation-modeling method for non-stationary Wiener degradation process, 
which can be employed in the condition based maintenance under which the maintenance is imperfect. 
The imperfect-maintenance assumption has rarely been studied in condition based maintenance, due to 
the complexity of degradation modeling, and this study has advanced an efficient tactic to deal with this 
problem. Simulation study shows that the stochastic filtering algorithm performs quite well in assessing 
degradation rate. Particularly, after running the algorithm 30 times, we are able to accurately estimate the 
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degradation rate. To put it in another word, our algorithm only requires a sample with small sample size, 
showing another advantage of the proposed method. 

Future research can be done in many directions. Most of the available research on degradation modeling 
postulates a deterministic failure threshold and assesses the reliability a component or system by 
comparing the projected degradation process to this critical threshold. However, since the operational 
condition from user to user varies wildly, each component or system should be treated individually. Under 
the circumstances, a probabilistic failure threshold is more adequate and reasonable. Therefore, it is of 
interest to further investigate how the maintenance strategy will perform when the failure threshold is a 
random variable. Moreover, for a practical implementation, it is necessary to fit degradation processes to 
the real data. A procedure of estimating the model parameters from the collected data has to be 
considered in a future work.
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