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An image-based multi-resolution sensor for online prediction of crystal size distribution (CSD) is proposed. 
The mean and standard deviation (std) of lognormal probability density function as the CSD can be 
predicted through the on-line sensor. Texture analysis, through wavelet-texture algorithm, as characteristic 
parameters to follow the crystal growth is utilized. Following nonlinear mappings consisting of artificial 
neural networks (ANNs) is incorporated using as inputs the texture information in conjunction with the 
available on-line process conditions. The output data for training the ANN models are measured manually 
at different sampling times as well as in a range of operating conditions. Validations against experimental 
data are presented for the NaCl-water-ethanol anti-solvent crystallization system. 

1. Introduction 
Crystallization is a critical part of processing in fine chemicals and pharmaceutical industries. During 
manufacturing, transition substances and/or end-products can exist in crystal particulate form. Crystal size, 
as an important external crystal structure, can largely influence the textural and physical properties of the 
final commercial products. A narrow CSD with desired mean size is preferred by industries. Monitoring the 
CSD is vital during this process for the purpose of achieving a target end-product size. Image analysis has 
been a very promising method for direct measurements of size, size distribution and shape aided by recent 
progress in high speed imaging devices and equally powerful computers at reasonable costs and the 
adaptability to real-time application.  
The key issue of applying digital images for process monitoring and controlling is extracting relevant 
information correctly from disturbances in real life situation. Real-life crystal images can have 
agglomerating or touching and overlapping problems. Physical dispersion can be used to avoid these 
phenomena prior to capturing the images. This operation, however, can reduce but cannot eliminate 
agglomeration and overlapping events because dispersed crystals will flow together, especially in high 
solid concentration conditions. Zhang (2011) proposed a multi-resolution fuzzy clustering approach to 
separate touching and overlapping regions. This method can successfully segment when this problem is 
limited. This paper deals with severe touching and overlapping problems by performing texture analysis on 
crystal clusters aiming at accurate crystal image processing and subsequently correct control action.  
In this paper, an image-based multi-resolution sensor for online prediction of CSD is proposed. The mean 
and standard deviation (std) of lognormal probability density function as the CSD can be predicted through 
the on-line sensor. A novel approach is proposed for crystal image texture analysis based on wavelet-
fractal-energy algorithms. Fractal dimension (FD) as the texture analysis parameter provides a non-integer 
value to describe crystal growth from crystal images from the point of view of surface roughness. 
Furthermore, energy signatures, obtained from the wavelet coefficients, FD as well as process conditions 
are utilized in the approach to build ANN models towards the estimation and prediction of the mean crystal 
size and std from images. A series of experiments using NaCl-water-ethanol anti-solvent crystallization 
system were carried out to illustrate the approach.  
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2. Methodology for the Image-based multi-resolution Sensor 
The overall architecture of online crystal size distribution prediction by Image-Based Multi Resolution 
Sensor is given in Figure 1. The crystallization can be carried out in a reactor with suitable volume and 
designs that allow temperature detection, anti-solvent addition and crystal suspension circulation. To 
maintain desired crystallization manufacturing parameters, temperature and anti-solvent addition speed in 
this case, control instruments such as feed pump or equipment with control function are welcomed. Crystal 
suspension circulates through a cell at which the crystal images are taken by a camera connecting to a 
microscope and a computer. The images will be stored in a database in the computer and gone through 
image analysis. The essential and sequence of steps for implementing the proposed methodology for CSD 
prediction from crystal images are shown in rectangular boxes in Figure 1. The sensor needs a 
prerequisite ANN which can be built at several crystallization conditions with corresponding images. An 
input image is treated as a 2D array of pixel intensities. A thresholding algorithm is applied for extracting 
features of interest which are the crystal clusters in this work. This is accomplished through a series of 
three sub-steps: a) detection of crystal edges by a threshold value differentiating them from the 
background, b) detection of the locations of the crystal clusters with the help of x-y coordinates on the 
binary image of crystal clusters, and c) determining and extracting the intensity values belonging to the 
crystal clusters. The information data of the clusters is then restored into a vector, being processed to 
generate the texture features by means of wavelet-fractal-energy algorithm. In this regard, it is first 
decomposed by wavelet transformation at several levels into details and an approximation. The detail from 
lower decomposition level and the approximation are considered as the high and low frequency noise to 
be removed. The remained details are then used for finding their variance and 2-based logarithm of the 
variance. The 2-based logarithm of the variance at each scale and decomposition scales are then used to 
calculate the Hurst exponent and consequently the FD. The texture features as well as crystallization 
conditions (flow and temperature) are then used as inputs in an ANN for the prediction of crystal mean size 
or standard deviation. In the following all the components of the methodology are briefly explained. 
 

 
Figure 1:  Overall architecture of CSD prediction 

3. Texture analysis by wavelet transformation 
Wavelet transform, a multi-resolution technique, can extract textural characteristics from crystal images. It 
can decompose a signal into several details and an approximation. Details carry the characteristic 
information such as edges of distinct objects distinguishing its corresponding signal from others. The 
approximation, on the other hand, usually reflects the intensity variance generated by lighting or 
illumination. Thus extracting features from details is more appropriate than from the approximation. As the 
number of crystal edges is the distinction between small and large crystals in images, texture features can 
be obtained from the point of energy distribution. 
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3.1 Wavelet transformation 
Discrete wavelet transformation (DWT) is an efficient and accurate way used in this context since an 
image can be considered as discrete data. DWT calculates at selected scale ܽ and location ܾ parameter 
(Addison 2002). They are discretized in such a manner that ܽ and ܾ are linked. The scale ܽ is generally 
discretized in a logarithmic way ܽ where ݉ is an integer. Each location ܾ can be reached in discrete 
steps ݊  (an integer) from an origin. It is also proportional to the scale ܽ. Thus it can be represented as ܾ݊ܽ. In wavelet transformation, a wavelike function called wavelet ߰, is used to transform a signal or 
function ݂(ݔ)  in space or time into another form by convolution. Discrete wavelet transformation ܶ, is 
known as the detail coefficients or high-frequency components. The approximation coefficients ܵ, , like 
the detail coefficients generated by wavelet functions, are given by convoluting with the function  ݂(ݔ) and 
another set of functions called scaling functions ߶,(ݔ). Taking multi-resolution into consideration, we can 
write the function ݂(ݔ) as a sum of approximation of the function at arbitrary scale index ݉ and detail 
function from scale ݉ to −∞ , using the approximation coefficients and detail coefficients: 

(ݔ)݂  = ∑ ܵబ,߶బ,(ݔ)ାஶୀିஶ + ∑ ∑ ܶ,߰,ାஶୀିஶబୀିஶ  ⑴                                                                          (ݔ)

 

3.2 Wavelet energy signature 
After wavelet decomposition, the coefficient variance at scale ݉ is calculated using the following equation: 

  〈 ܶ,ଶ 〉 = ∑ ൫ ்,൯మమಾషషభసబ ଶಾష                                                                                                                                ⑵ 

According to this expression, wavelet coefficient variance can be explained as the average energy 
wrapped up per coefficient at each scale. In this context, the detail variance is used as the wavelet energy 
signature. 
 

3.3 Fractal-Wavelet Feature 
Fractal dimension (FD) is a statistical real number that measures how complicated a fractal is. Fractals are 
objects that possess self-similar property, where fractals appear identical at different scales or numerical 
or statistical measures of fractals are consistent across scales. The reason why FD is selected as the 
texture feature is that the dynamics of crystal growth follows a fractal process and crystals in images 
exhibit statistical self-similarity in reality. To calculate FD, we here use fractal-wavelet method which 
requires not only wavelet decomposition but also fractional Brownian motion (fBm) function in our work. 
The FD of an fBm function can be calculated through the relationship equation: 

ܦܨ  = ாܦ + 1 −  ⑶                                                                                                                                          ܪ

Here ܦா is the Euclidean dimension. The Hurst exponent, ܪ, has a value between 0 and 1 characterizing 
fBm. It is an indicator to reflect the smoothness of the fBm function: the higher the Hurst exponent is, the 
smoother the fBm function is.  For an fBm, ܪ also scales to wavelet power spectra ௪ܲ( ݂) and frequency ݂. Meanwhile, the wavelet power spectra is related to the variance of discrete wavelet coefficients, and 
the frequency is inversely proportional to the wavelet scale ܽ. The logarithmic plot of variance of discrete 
wavelet coefficients provides a method of deciding Hurst exponent from the slope of the plot. 

〉ଶ൫݈݃  ܶ,ଶ 〉൯ = ܪ2) + 1)݉ +  ⑷                                                                                                       ݐ݊ܽݐݏ݊ܿ

Where, the constant depends both on the wavelet function and the Hurst exponent. 

4. Artificial neural network 
Artificial Neural Networks (ANNs) have been explored as mathematical models to process information. 
ANNs have a strong ability in capturing complex input/output relationships. The network is composed by a 
number of nodes or units connected to the inputs and to the outputs. The signals pass throw the 
connections and are scaled using appropriate weights, obtained through a learning procedure aimed to 
obtain good generalization capability of the network.  
In our work, three-layer feed-forward neural networks (FNNs) are utilized as a nonlinear mapping to predict 
the particle characteristics from the texture analysis and operating conditions. An input layer ࢞ consisting 
of sensory neurons, a hidden layer of computational neurons and an output layer ࢟ of target neurons. The 
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hidden layer ࢇ is connected with the input layer through a Tan-Sigmoid transfer function with weights 1ࢃ 
and biases 1࢈, as: ࢇ = ࢞1ࢃ)݂ +  ⑸                                                                                                                                         (1࢈

The output layer has the similar connection to the hidden layer with a linear transfer function: ࢟ = ࢇ2ࢃ)߮ +  ⑹                                                                                                                                         (2࢈

FNN is a supervised neural model, which has been developed using Matlab Neural Network Toolbox. The 
network parameter estimation, generally referred to as neural network training, has been developed by 
means of the Levenberg-Marquardt optimization algorithm, using the mean square error (MSE) between 
the network outputs and the targets as objective function. Training the net can be started by first randomly 
initializing the weights. 

5. Case study 
5.1 Experiment 
A set of anti-solvent crystallization experiments at both constant and changed conditions was carried out 
with flow rate and temperature as the operating variables. For constant conditions, three different values 
were chosen: 0.7 ml/min, 1.5 ml/min, 3 ml/min as flowrate and 10°C, 20°C, 30°C as temperature. For 
validation purposes and additional run for a typical temperature and flowrate profile was performed. At the 
start up conditions, the crystallizer was filled with the saline solution composed of 100 g of water and 34 g 
of NaCl. The solvent solution was made up of 95% of ethanol and was added by the time to the initial 
solution using a peristaltic pump. As for the crystals growth examination, this had been performed 
choosing to work in an online fashion by using a peristaltic pump to direct the solution into a glass cell 
(Figure 1).  
A laboratory scale software/hardware framework for capturing crystal images for this case study was 
setup. The experimental setting utilizes a USB microscope camera (model MD900) with a resolution of 
1280 x 960 pixels, which fits into the side tube on the side of the microscope with one of the supplied 
adapters and connects to a computer. The AMSCOPE software is utilized (off-line) for manual 
measurement (individual particle analysis) utilized for training and validation. The magnification used is 
25x which corresponds to 0.775 Microns/pixel. This conversion factor was used to manually measure 
individual crystal sizes on each image. Images were taken at different crystallization stages (30, 60, 90, 
120, 180, 240, 300, 360, 420 and 480 min for flowrate of 0.7 and 1.5 ml/min, 10, 15, 20, 30, 60, 90, 120, 
180, 240 and 300min for flowrate of 3.0 ml/min. At each crystal growth stage, a set of at least 10 images 
capturing different amount of crystals were utilized. 
 

5.2 Texture analysis on crystal images 
A sample image from crystallization at 10 °C and 0.7 ml/min at 30 min is used to illustrate the method of 
FD estimation from crystal images. The original grey crystal image (Figure 2a) in TIF format was imported 
in Matlab for image analysis. To make calculations simpler, the image intensities have been normalized 
with intensity value into a range of 0 to 1. Otsu’s method multiplied by a parameter 1.1 generated a 
threshold value of 0.7182 for the normalized image; implying pixels with intensity value below 0.7182 
belong to edges. Threshold method gave birth to a binary image shown in Figure 2b. The holes presented 
in the edge detection binary image correspond to crystal bodies in the original image. A morphological 
operation was used to fill the holes and generated the image shown in Figure 2c which provides the 
location information of crystal clusters. The locations of each crystal cluster in crystal cluster binary image 
are the same as those in the original image since the size of the former image is the same as the latter. 
Identifying crystal clusters was achieved through determining the locations of crystal clusters and storing 
them in an empty image. The detected crystal clusters are depicted in Figure 2d. The intensities of the 
crystal clusters were then rearranged in a sequence of the same column order connecting with the next 
row as a vector with a length of 224203. The intensity vector was the input data for the wavelet-fractal 
analysis. In this study, wavelet function ‘db3’ was chosen and decompositions at six levels were 
performed. We select details from decomposition level 3 to 6 for further analysis. The variance of the detail 
coefficients are 0.011, 0.083, 0.26, and 0.49 respectively. Performing a least-square linear fit for 2-based 
logarithm of the detail variance and its corresponding decomposition level, we found the slope was 1.7976.  
Using equations (4) and the previously calculated slope, we calculated the Hurst exponent to be 0.3988 
and FD, according to equation (3), to be 1.6012 when 1 was adopted as the Euclidean dimension for 1-D 
situation. 
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Figure 2: (a) Original, (b) Edge detection binary image, (c) Crystal clusters binary image, (d) Crystal clusters image. 

6. ANN models and prediction 
The topology structure of ANN was designed to be a three-layer network, which including seven input 
neurons/variables (temperature, flowrate, wavelet energy signature at decomposition level 3 to 6, FD) and 
one output/target neuron which is the manually measured mean size or std. The gradient and the number 
of validation checks are the training termination criteria. Images from the constant conditions comprise of 
the training set for the ANN model while those from the changed conditions are the testing set. For images 
coming at the same stage from a specific condition, the corresponding outputs, shared the same value. 
The predicted size for each stage from a specific condition was the average of generated values by the 
ANN model for corresponding images. The prediction validity, defined as how well the predicted outcomes 
obtained from the ANN model fit the experimental values, can be confirmed by the root mean square error 
 ,݀݁ݎ short for experimental, and ,ݔ݁ ଶstatistics and sum of squared residuals (ܴܵܵ) betweenܴ ,(ܧܵܯܴ)
short for predicted values, as: ܴܧܵܯ = ට∑(௫ିௗ)మ  ,       ܴଶ = 1 − ∑(௫ି௩)మ∑(௫ିௗ)మ ,       ܴܵܵ = ݔ݁)∑ −  ⑺                                            ଶ(݀݁ݎ

Two ANN models were built to predict the mean size and std respectively. The manually measured mean 
size was used as the outputs for the former. Standard deviation from the best global model using nonlinear 
Fokker-Planck Equation (Grosso et al. 2001) were adopt as the targets for the latter. The statistical 
characterizations of the size prediction for training and testing sets are listed in Table 1.  

Table 1:  Statistical parameters of ANN for prediction for training, and testing set. 

 Mean size prediction Standard deviation prediction 
Predicted size by ANN RMSE R2 SSR RMSE R2 SSR 
10℃, 0.7ml/min 4.18 91% 174 2.68 62% 72 
10℃, 1.5ml/min 9.28 51% 861 2.67 91% 72 
10℃, 3.0ml/min 6.66 76% 354 3.97 45% 110 
20℃, 0.7ml/min 4.62 88% 213 1.35 94% 18 
20℃, 1.5ml/min 8.76 68% 767 2.62 83% 69 
20℃, 3.0ml/min 6.23 89% 310 2.00 92% 28 
30℃, 0.7ml/min 7.5 89% 564 1.18 87% 14 
30℃, 1.5ml/min 11.3 74% 1276 0.97 64% 8 
30℃, 3.0ml/min 10.7 75% 912 4.39 60% 135 
Changed conditions (test) 5.62 96% 319 2.12 91% 45 
 
Figure 3 shows how the CSD model predictions compare to the raw histogram experimental data and the 
estimated probability density function (pdf) of the raw data.  They show the samples taken at 20, 30, 60, 
90, 120, 180, 240, 300, 360, 420 and 480 minutes for the crystallization experiment with changed 
conditions. As illustrated in the figures, the image-based multi-resolution sensor shows an excellent 
performance in matching both the smoothed data and the raw data histograms. 

7. Conclusions 
An image-based approach of texture analysis combining thresholding and wavelet-fractal with ANN for the 
prediction of CSD was proposed and applied on a case study. This method could successfully and 
automatically identify crystal clusters and estimate the texture by means of FD and wavelet energy 
signature. The relationship of FD and crystal mean size had been extracted and built as an ANN model for 
predicting crystal mean size as well as for standard deviation. The experimental results attest the potential 
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application of the proposed method for crystal production process monitoring and control given good 
quality of images by high speed cameras. The number of input variables of ANN can be further 
investigated to improve the predictions. 

 
Figure 3: Comparison predicted CSD, raw histogram and the smoothed approximation with the manually measured 
lognormal distribution parameters at each sampling time from the crystallization at changed operation conditions. 
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