
 CCHHEEMMIICCAALL  EENNGGIINNEEEERRIINNGG  TTRRAANNSSAACCTTIIOONNSS  
 

VOL. 32, 2013 

A publication of 

The Italian Association 
of Chemical Engineering 

Online at: www.aidic.it/cet 
Chief Editors: Sauro Pierucci, Jiří J. Klemeš 
Copyright © 2013, AIDIC Servizi S.r.l., 
ISBN 978-88-95608-23-5; ISSN 1974-9791                                                                                     
 

Biofilms Composed of Alginate and Pectin: Effect of 
Concentration of Crosslinker and Plasticizer Agents 

Fernanda L. Seixasa,b,*, Franciele R. B. Turbianib, Patricia G. Salomãob, Renata 
P. Souzaa, Marcelino L. Gimenesa. 
aState University of Maringá, Chemical Engineering Department., Av. Colombo, 5790, Maringá, Paraná, Brazil. 
bFederal Technological University of Paraná, COPEQ, Rua Marcílio Dias, 635, Apucarana, Paraná, Brazil. 
fernandalini@ibest.com.br 

Biofilms are defined as flexible films prepared from biological materials such as proteins and 
polysaccharides that act as barriers to outside elements. These materials have potential application in 
medical, pharmaceutical and food area. Their use depends on various parameters such as mechanical 
properties (strength and flexibility), barrier properties (permeability to water vapor), water solubility, among 
others. This work aims to characterize biofilms made from pectin and alginate. The films were prepared by 
casting. This technique consists in preparing a film solution (2 % w/v) followed by the application of it in a 
holder for solvent evaporation. The manufacturing process of the films consisted of two stages. First the 
alginate and pectin (1:1) were dissolved in water containing 0.04 g of CaCl2.2H2O/g macromolecule and 
0.6 g glycerol/g macromolecule. The second stage (crosslinking complementary) consisted of immersing 
the films in 50 mL of a solution CaCl2.2H2O and glycerol, both with different concentrations, for 30 
minutes. Was evaluated the effects of the plasticizer (glycerol 5, 7 and 10 % v/v) and crosslinking agent 
(Ca++ 3, 5 and 7 % w/v) on mechanical properties, water solubility, degree of swelling and permeability to 
water vapor in the biofilms. The films, with an average thickness of 0.07mm, were attractive appearance, 
acceptable mechanical properties, moisture content around 20 % and water solubility in the range of 32 to 
55 %. These films have a degree of swelling around 1 to 3.5 %. The water vapor permeability is moderate 
and the values are typical of biofilms hydrophilic. 
 

1. Introduction 
Biofilms are formed from natural polymers, of animal or vegetable origin, such as polysaccharides, lipids 
and proteins. These materials, when released into the environment, are converted into simple compounds 
that do not harm the biosystem (Chandra and Rustgi, 1998). Pectin, a polysaccharide that can be 
extracted from citrus peels, and alginate, a carbohydrate extracted from various species of algae 
Phaeophyceae, for being natural polymers, have low cost, high stability, good gelling properties, 
biocompatibility, atoxicity and easy modification chemistry and biochemistry (Bunhak et al., 2007). Thus, 
these materials have great potential for use in the preparation of biofilms, covering of food, drug coating, 
among others. 
The materials used in the preparation of the films present advantages and disadvantages, and their 
combination can promote improvement in the desired characteristics. Films made from pure pectin show 
up completely soluble in water, besides having poor mechanical properties. On the other hand biofilms 
made from alginate, demonstrate high rigidity and low deformability. In this sense, the two polysaccharides 
were used in the preparation of the biofilms, seeking with this, the improvement of their properties. 
For the development of a filmogenic solution are required basic constituents such as: high molecular mass 
polymers, solvents, plasticizers and crosslinking agents. Each of these materials is used aiming to provide 
certain characteristics to the biofilm. Thus, this study examined the influence of concentration of calcium 
chloride (crosslinking agent) and glycerol (plasticizing agent) on the properties of the films. 
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2. Experimental 

2.1 Materials 
The biofilms were produced from a blend of citric pectin (Vetec PA, Brazil, HM) and sodium alginate (PA 
Synth, Brazil). Furthermore were used Calcium chloride dihydrate (Merck ACS, USA) as crosslinking agent 
and glycerol (Synth PA, Brazil) as plasticizer.  

2.2 Preparation of biofilms 
The biofilms made of pectin and sodium alginate were obtained according Turbiani (2007), using the 
technique of casting. A polymer solution with a mass fraction of 2 % (g/mL) was prepared by dissolving 
pectin and alginate (1:1) in distilled water containing glycerol (0.6 g glycerol/g macromolecule) at 30 °C. 
The solution was mechanically stirred at 800 rpm for 1 h until complete dissolution. Subsequently, it 
increased the solution temperature to 70 °C and 30 mL of a solution of calcium chloride dihydrate 
(CaCl2.2H2O 0.04 g/g macromolecule) was added to the system at a flow rate of 1 mL/min. This filmogenic 
solution was then transferred into polypropylene plates (diameter = 14 cm). The plates were brought to a 
circulating air oven at 40 °C for about 20 h. In this step the film formed is water soluble and should 
undergo a supplementary crosslinking. The crosslinking complementary consists in immersing the film for 
30 min in a room temperature bath consisting of 50 mL of a solution containing CaCl2.2H2O (3, 5, and 7 %) 
(g/mL) and glycerol (5, 7 and 10 %) (v/v). Then, the films were removed from the bath and maintained on a 
support for 20 h, at ambient temperature, for drying. The films were stored in a desiccator at a relative 
humidity of 52 %, for a period of three days to reach the equilibrium moisture in this environment before its 
characterization. 

2.3 Film Characterization  
The films were characterized with respect to its thickness, surface characteristics, moisture content, water 
solubility, degree of swelling, mechanical properties (stress and elongation at break) and permeability to 
water vapor. 
2.3.1 Solubility (S) 
The water solubility was determined According to Irissin-Mangata et al. (2001). The Samples of biofilm 
were weighted and the value of its mass was named (idm), subsequently the samples were immersed in 
100 mL of distilled water and the system maintained under mild agitation at 25 ºC for 24 h using a shaker 
Tecnical TE-421. The end dry mass (edm) was determined by subjecting this sample to oven drying (105 
°C for 24 h). The solubility of the biofilm (S) was expressed in terms of the initial dry mass (idm) of the 
biofilm through the Eq (1). 

100.)(
idm

edmidmS −=           (1) 

2.3.2 Thickness 
The thickness of the films was determined using a digital micrometer (MITUTOYO, Model MDC-25S, 
resolution 0.001 mm, USA). 
2.3.3 Degree of swelling (DS) 
The degree of swelling of the films was determined according Turbiani (2007). The total initial mass (mi) of 
a film sample of 2.5 cm diameter was determined and the material was immersed in distilled water for 
different time periods. At certain periods of time, film was removed from the water and its total mass (mt) 
was determined, then the sample returned to water, this process was repeated until the weight of the 
sample film was kept constant. Excess moisture on the sample surface was removed by placing the film 
between two sheets of filter paper, before each weighing. The degree of swelling (DS) was calculated 
according to Eq (2). 

mi
mimtDS )( −=                                                                                                                                       (2) 

2.3.4 Permeability to water vapor (Kpvw) 
The permeability to water vapor (Kpvw) was determined gravimetrically according to Method E95-96 
(ASTM, 1995b), using small capsules made of plastic and aluminum. Granular calcium chloride was used 
to fill the bottom of the cell, keeping the moisture inside the capsule in the amount of 2 %. Biofilm samples 
were fixed on the cells. This system has remained within a desiccator with a relative humidity of 68 % 
contained, conferred by a saturated solution of sodium chloride. Thus, there was permeation of water 
vapor through the film between the two atmospheres with different humidities. 
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2.3.5 Mechanical Properties 
The Stress at break (T) and the elongation at break (E) of the biofilms were obtained using the method 
D882 (ASTM, 1995a), using a texturometer TA.XT2 (Stable Microsystems, UK). The resistance to traction 
was expressed as the maximum tensile strength divided by the initial cross-sectional area of the film strip 
and the elongation at break, as a percentage of the original length. 
2.3.6 Surface characteristic 
For visualization of the surface characteristics of the films, it was used a scanning electron microscope 
Shimadzu SS - 550, Superscan, software Superscan SS-550. The samples were adhered to a support 
with the use of a double-sided tape of conductive carbon and subsequently metallized with gold to ensure 
electrical conductivity of the surface observation. 

3. Results and Discussion 
The films made from pectin and alginate showed up with a slightly yellowish color, translucent and 
homogeneous surface.  
Through the microscopic images of composite films for different concentrations of crosslinker solution, 
shown in Figure 1, we can observe that the films presented a matrix filmogenic continuous and compact. 
This behavior demonstrates the chemical compatibility of the two polysaccharides. 
The films formulated from a crosslinker solution containing 3 % CaCl2 (w/v) and 5 % glycerol  (v/v) 
originated the surface more uniform among all the treatments. Having, thus, the total incorporation of 
crosslinking agents and plasticizers to filmogenic matrix. 
For films prepared with 7 % CaCl2 (w/v)  is possible to observe the initiation of the formation of small 
granules of calcium on the surface of the film, evidence that for crosslinking concentrations higher than this 
may be a saturation limit of the absorption of ions in the film. 
When we analyzed the images under varying concentration of glycerol is possible to note that the increase 
of this factor produces films rougher surface. With this, they become more flexible and consequently less 
resistant to tension, in addition to having greater permeability to water vapor since its display area 
becomes relatively greater. 
 
 

     
 
 

   
 

Figure 1: Scanning electron microscopy at the surface of the biofilms composed of pectin and alginate, to 
different concentrations of crosslinker solution for the 2nd stage (2000 X mag). 

 
Although in some applications high solubility of the films may be desirable low solubility edible films is one 
of the most important requirement for food and pharmaceutical applications. The water solubility displayed 
by the biofilms treated with different concentrations of crosslinker solution is shown in Table 1. The films 

5% Glycerol and 3% CaCl2. 10% Glycerol and 3% CaCl2. 5% Glycerol and 7% CaCl2. 

10% Glycerol and 7% CaCl2. 7% Glycerol and 5% CaCl2.
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presented values of solubility between 32.88 and 51.98 %. Silva et al. (2009) found values between 8.8 
and 37.2 % of mass solubilized for composite biofilms of pectin and alginate. For biofilms of pure pectin 
added fatty acid, Batista (2004) obtained materials 100 % soluble in water. Showing, with that, the highly 
hygroscopic characteristics of pectins. Turbiani (2007) prepared biofilms from sodium alginate crosslinked 
with 0.8 % CaCl2 in the 1st stage and crosslinked in the 2nd stage with a solution containing 5 % glycerol 
and different contents of CaCl2. The solubility found by the author was maintained around 13 %. 
Comparing the values for water solubility obtained in this work with biofilms made from pure 
polysaccharides, one realizes that the biofilm originated from the blend of the two, showed intermediate 
greatness.  
It can be seen that increasing the concentration of crosslinker results in a significant decrease the solubility 
of the biofilms, indicating that the ions Ca++ actually promoted crosslinking of the polymer chains, thereby 
increasing the concentration of Ca++ makes the intermolecular bonds more cohesive and arranged, 
making, thus, the solubilization of the biofilms. Moreover, increasing the concentration of glycerol promotes 
a slight increase of the solubilization of the films. This may be an indication that the plasticizer used can 
peel off on the polymer matrix, causing it to gaps in the material, making it more accessible to water 
molecules. Thus, the use of glycerol as the plasticizer is not suitable for preparation of materials that need 
to present low solubility. Another important factor to be considered is the hygroscopic character of glycerol, 
contributing to the increase in the moisture films, as can be seen in Table 2. 
The examination of the data presented in Table 1 shows that the increase in concentration of plasticizer 
promotes an increase in the permeability of the films. It is also observed that the permeability of the films 
decreases as the concentration of Ca ++ increases. 
The classification of films in relation to their barrier properties to water vapor can be established by 
comparing some material already on the market. According to the classification given by Krochta and 
Mulder-Johnston (1997). Films of alginate and pectin present as moderate barriers to water vapor. The 
values of Kpvw (7.7 to 9.82 g.mm/m2.dia.kPa), shown in Table 1, are slightly larger than those found in films 
obtained from other formulations. Films based on fatty acid and pectin (0.04 g pectin/mL) showed Kpvw 
equal to 6.80  g.mm/m2.dia.kPa (Batista, 2004). Films of alginate crosslinked with sodium (3 % CaCl2) 
presented water vapor permeability around 4.5 g.mm/m2.dia.kPa (Turbiani, 2007). Higher values of 
permeability to water vapor found may be justified by the use of plasticizing agent, the inclusion of glycerol 
molecules between the polymer chains causes the spacing therebetween increases, facilitating with this 
diffusion of water vapour through the film (Yang and Paulson, 2000).  
 

Table 1:  Values of stress at break (T), percent elongation at break (E), solubilized in water mass (S) and 
water vapour permeability (Kpvw) to variations in the concentration of crosslinker solution. 

Glycerol (%) 
(mL/mL) 

CaCl2 (%) 
(g/mL) 

T (MPa) E (%) S (%) Kpvw 
(g.mm)/(m2.dia.kPa) 

10 3 25.49 (± 6.58) 13.99 (± 3.55) 51.98 (± 0.96) 9.82 (± 0.027) 

10 7 28.82 (± 9.07) 9.35 (± 4.65) 36.45 (± 0.49) 8.29 (± 0.039) 

5 7 37.22 (± 4.55) 2.18 (± 2.58) 32.88 (± 0.57) 7.72 (± 0.014) 

5 3 27.47 (± 6.98) 3.64 (± 5.25) 48.50 (± 1.25) 8.77 (± 0.025) 

7 5 30.31(± 8.97) 2.90 (±5.67) 36.78 (± 0.42) 8.16 (± 0.028) 

 
 
The tensile strength is for the film a mechanical resistance, which can be attributed to the cohesion 
between the matrix of the filmogenic polymer chains, whereas the elongation is a measure of the plasticity 
of the film, namely its capacity to stretch to occur before their rupture (Cuq et al., 1995). We can see from 
the data presented in Table 1 that the stress at break (T) decreases with increasing glycerol concentration, 
this is due to the fact that the plasticizer makes the film more flexible and consequently less rigid. It is also 
possible to note that increasing the concentration of Ca++ provides an increase in tensile strength of the 
films, this increase can be explained by the development of crosslinking between the carboxyl groups 
present in the molecules of alginate and pectin and Ca++ (Pavlath et. al., 1999). The films presented 
measures of tension around 25.49 to 37.22 MPa, these values are lower than those found by Silva et al. 
(2009) to formulate films of pectin and alginate. This may be due to the the fragility of the films as the 
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preparation for the analysis, since small cracks on the sides of samples facilitate the breakup of the film 
(Turbiani, 2007). 
Regarding the property of stretching the plasticizer contribute significantly to increase the elasticity of the 
films. The crosslinking agent in turn causes decrease in elongation of the film, however, produces a less 
pronounced effect than the former. The elongation values remained between 2.18 and 13.99 %. Turbiani 
(2007) obtained pure alginate films with low elongation properties, around 0.71 to 2.66 %, demonstrating 
with this, the feature of alginate to form rigid films and little elastic. For films of fatty acid and pectin, Batista 
(2004) found values ranging from 1.77 to 5.99 %. As a result, the composite films presented a sharp 
improvement in their elastic properties. 
Table 2 shows the values of the degree of swelling of the films submitted to different concentrations of 
crosslinker solution. In this experiment the films remained intact after 36 min of immersion in water and 
showed similar appearance to the original film. The swelling degree of equilibrium reached after 36 
minutes. The values found remained between 1.09 and 2.18, which is consistent with those obtained by 
Silva et al. (2009) for composite films of pectin and alginate. 
 
 
Table 2: Swelling degree, average thickness and moisture content for the films of pectin and alginate to 

variations in the concentration of crosslinker solution for the 2nd stage. 

Glycerol (%) 
(mL/mL) 

CaCl2 (%) 
(g/mL) 

SD Thickness (mm) Moisture (%) 

10 3 2.18 0.076 (± 0.001) 0.33 (± 0.015) 

10 7 1.64 0.065 (± 0.004) 0.28 (± 0.014) 

5 7 1.09 0.051 (± 0.005) 0.20 (± 0.056) 

5 3 1.99 0.076 (± 0.003) 0.27 (± 0.10) 

7 5 1.94 0.063 (± 0.004) 0.16 (± 0.006) 

 
 

4. Conclusions 
Biofilms prepared by the blend of pectin and alginate presented improved properties when compared to 
the films prepared from the pure polymers. The composite films presented up translucent and 
homogeneous. When analyzing the effect of the crosslinker agent on the characteristics of the films can be 
concluded that this contributes to the decreased solubility and permeability to water vapor, addition to 
providing increased resistance of the material. The plasticizer used provided obtain biofilms more 
malleable in the sense that increased elasticity thereof. The films were considered moderate barrier to 
water vapor. The synthesized materials presented better qualities when obtained from using a crosslinker 
solution composed of 5 % (mL/mL) of glycerol and 7 % (g/mL) CaCl2. 
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