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The α-reformulation (αR) technique can be used to transform any nonconvex twice-differentiable mixed-
integer nonlinear programming problem to a convex relaxed form. By adding a quadratic function to the 
nonconvex function it is possible to convexify it, and by subtracting a piecewise linearization of the added 
function a convex underestimator will be obtained. This reformulation technique is implemented in the α 
global optimization (αGO) algorithm solving the specified problem type to global optimality as a sequence 
of reformulated subproblems where the piecewise linear functions are refined in each step. The tightness 
of the underestimator has a large impact on the efficiency of the solution process, and in this paper it is 
shown how it is possible to reduce the approximation error by utilizing a piecewise quadratic spline func-
tion defined on smaller subintervals. The improved underestimator is also applied to test problems illustrat-
ing its performance. 

1. Introduction 
The α global optimization (αGO) algorithm is a method for solving mixed-integer nonlinear programming 
(MINLP) problems containing nonconvex twice-differentiable functions to global optimality. Instead of utiliz-
ing a branch and bound strategy, it is based on formulating and iteratively solving reformulated convex 
MINLP problems providing an increasing sequence of lower bounds for the original nonconvex problem, cf. 
Lundell and Westerlund (2012a). No upper bounds need to be calculated in this method.  
The nonconvex functions are convexified and underestimated using a technique called α reformulation 
(αR). The αR is based on the αBB convex underestimator as described in, e.g., Floudas (2000), where the 
quadratic function  ݃(ݔ) + ݔ)ߙ	 − ݔ)(ݔ −  (1)  (ݔ

is used to convexify and underestimate the nonconvex function g on the interval [ݔ, -This function un .[ݔ
derestimates g in the entire interval since α is positive. To guarantee convexity, there is a positive lower 
limit on the value of α. A larger α-value results in a less tight convex underestimator, so ideally the smallest 
possible value should be selected. For a univariate function, the minimal α in the interval [ݔ,  is found by ,[ݔ
taking the second derivative of the function in (1), i.e.,  ݃′′(ݔ) +  (2) ߙ2	

and then searching for the minimum positive value α fulfilling  ߙ ≥ −ቀଵଶቁ݃ᇱᇱ(ݔ),			∀ݔ ∈ ,ݔ]  (3) .[ݔ

In the multivariate case, the limit value on α is more difficult to obtain and is generally replaced by a valid 
overestimation. Some methods to obtain such α -values are described in Floudas (2000). In this paper, the 
scaled Gerschgorin method is used. Newer versions of the αBB underestimator have also been presented, 
forxample, in Meyer and Floudas (2005) a version utilizing a quadratic spline function was proposed and 
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this underestimator is used for the reformulations in this paper. The spline underestimator has the benefit 
of allowing for different α-values in the domain considered. 

2. The reformulation technique 
The αR, as described in this paper, is applicable to the following type of problem 
  
minimize ݂(ܠ),  
subject to (ܠ) + (ܠ)ܐᇣᇧᇧᇧᇤᇧᇧᇧᇥ(ܠ)ܙ ≤ 	                                              (4) 	 ܠ = ,ଵݔ] ,ଶݔ … , ,்[ேݔ ܠ ∈ ,ܠ] 	.[ܠ
 
where f is a linear, convex nonlinear or nonconvex nonlinear objective function. The inequality constraints 
h ≤ 0 are composed of twice-differentiable nonconvex functions g and convex functions q. The variables in 
x may be integer- or real-valued, and are assumed to be bounded by appropriate explicit lower and upper 
bounds. Equality constraints are also allowed, but are relaxed to corresponding positive and negative 
inequality constraints. A nonconvex objective function is replaced by a variable μ and an additional con-
straint f(x) – μ ≤ 0 is included. 
The nonconvex problem in Eq (4) is convexified and relaxed by replacing the nonconvex functions in the 
constraints with convex underestimators, thus obtaining a convex overestimation of the original (noncon-
vex) feasible set and an underestimation of a nonconvex objective function, if present. The relaxation 
technique is a two-step process. In the first step, all functions are convexified by adding functions S con-
vex enough to overpower any nonconvexities to the nonconvex functions. In a second step, the nonconvex 
functions are underestimated by subtracting a piecewise linear function from each S. For the m-th noncon-
vex constraint this can be formulated as ℎ(ܠ) = ℎ(ܠ) +	 ൫ܵ,(ݔ) − ܹ,൯.ேୀଵ  (5) 

Since ܵ, is convex and ܹ, a piecewise linear function of it, ܵ, − ܹ, ≤ 0, and ℎ(ܠ) +	 ൫ܵ,(ݔ) − ܹ,൯ ≤ 0,ேୀଵ      where     ܹ, = PLF ቀܵ,(ݔ)ቁ, (6) 

will be both a convexified and relaxed constraint. 
When replacing the original nonconvex constraints with those in Eq (6), the result is a convex relaxed 
MINLP problem in an extended variable-space containing the original variables ܠ as well as the variables 
required for the PLFs. Also, the feasible region of this reformulated problem will contain that of the original 
nonconvex one.  
Initially, in Skjäl et al. (2011) the form ܵ(ݔ) 	= -ଶ was proposed for the convexification. However, in Lunݔߙ
dell and Westerlund (2012a), the spline version of the αBB underestimator from Meyer and Floudas (2005) 
was utilized in the framework. The spline underestimator is a smooth convex piecewise polynomial func-
tion of the form 

ܵ(ݔ) ۔ۖەۖ
ଶݔ,ଵߙۓ + ݔ,ଵߚ + ,,ଵߛ if	ݔ ∈ ൣ߱,ଵ, ߱,ଶ൧,ߙ,ଶݔଶ + ݔ,ଶߚ + ,,ଶߛ if	ݔ ∈ ൣ߱,ଶ, ߱,ଷ൧,									⋮ ଶݔ,ିଵߙ⋮						 + ݔ,ିଵߚ + ,,షభߛ if	ݔ ∈ ൣ߱,ିଵ, ߱,൧, (7) 

 
where ߙ,, ߚ, and ߛ, are parameters valid in the k-th breakpoint interval of the PLFs of variable ݔ, i.e., [߱,, ߱,ାଵ], in a specific constraint. The convexity requirement is guaranteed by sufficiently large ߙ,-
values, and the continuity and smoothness of the underestimator is given by the parameters ߚ, and ߛ,. 
The ߙ-values are calculated for example using the methods presented in Floudas (2000), and the ߚ- and ߛ-values using the expressions in Meyer and Floudas (2005). This underestimator has the possibility of 
using different ߙ-values in different parts of the domain for the variable, whereas the original formulation 
required the largest ߙ-value over the entire domain to be selected for each variable.  

3. The αGO algorithm 
The αGO algorithm is a further development of the signomial global optimization (SGO) algorithm as de-
scribed in e.g., Lundell et al. (2009) and Lundell and Westerlund (2012a). In the SGO algorithm, single-
variable power and exponential transformation schemes were used to reformulate nonconvex signomial 
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(including posynomial and polynomial) functions. In the αGO algorithm however, the signomials are re-
garded as any other twice-differentiable nonconvex function, so no additional transformation schemes are 
required except for the αR. In Lundell et al. (2012), the αSGO algorithm was introduced, combining the two 
reformulation techniques. Since it is then possible to transform nonconvex signomials using both the αR as 
well as the power and exponential transformation schemes, a preprocessing step, selecting an optimized 
set of transformations for convexifying a given problem, was proposed in Lundell and Westerlund (2012b).  
The αGO, αSGO and SGO algorithms share a common framework, where a sequence of reformulated 
MINLP problems are solved until the global solution to the nonconvex problem is found as the solution to 
the final subproblem. In each iteration, the overestimation of the feasible region is reduced (in the original 
variables) by adding breakpoints to the PLF approximations. The overestimation of the feasible region 
have a large impact on the solution time and number of iterations required, so therefore tighter convex 
underestimators result in a more efficient solution process. This justifies the technique for refining the 
spline underestimator introduced in this paper. 
It is also possible to use the reformulation technique without an iterative procedure such as the αGO algo-
rithm by initially adding a sufficient amount of breakpoints to all PLFs and just solving one reformulated 
MINLP giving the global optimal solution to a specified tolerance. However, this is often not a viable strate-
gy for medium or large sized problems, since the complexity of the reformulated problem will be too high to 
be solved within a reasonable time-limit. 

4. Refining the spline underestimator 
Since the intervals used in the definition of the spline underestimators in Eq. (7) are not connected to those 
in the PLF approximations of ܹ  in Eq. (6) it is possible to improve the underestimator by defining the 
splines over finer intervals. The justification is that when considering smaller intervals, smaller ߙ-values 
may be obtained due to the function being convex in the interval (resulting in ߙ = 0) or since the technique 
for obtaining the ߙ-values gives tighter bounds on the parameters. An initial partitioning can be done once, 
and after this, the spline underestimator itself will not be recalculated in subsequent αGO iterations. The 
normal strategy is to calculate the spline underestimator in those intervals defined by the breakpoints in 
the PLFs, requiring the splines to be recalculated as new breakpoints are added in each iteration. The 
approximation ܹ  of the spline function ܵ will however be updated normally by adding additional break-
points to the PLFs.  
Note that, when regarding nonconvex functions, that are nonseparable with respect to the variables, the 
splines must be calculated in hypercubes corresponding to the discretization steps for all variables, and 
therefore the calculation of the parameters ߚ ,ߙ and ߛ for the splines are computationally quite costly if a 
too large number of subintervals are considered. For example, if considering a nonconvex function of two 
variables with 1,024 intervals each, the refinement grid will normally consist of a total of 1,024 ×1,024 = 
1,048,576 regions. Therefore, there is a practical limit on how fine the partitioning of the spline parameters 
should be. 
If it is possible to separate the nonconvex functions with respect to the involved variables, individual spline 
functions can also be used for the individual parts. This can be beneficial for complex multivariate noncon-
vex functions as it simplifies the calculation of the ߙ’s. 
 

4.1 An illustrative example 
To illustrate the refinement procedure for the splines, the reformulation technique is now applied to the 
nonconvex trigonometric function  ℎ(ݔ) = ݔ sin ݔ + ݔ 10⁄ 	ݔ						, ∈ [0,15],  (8) 

assumed to be present in an inequality constraint in a problem of type Eq 4). The function is shown in 
Figure 1. The nonconvex function is now replaced with the reformulated variant ℎ(ݔ) + (ݔ)ܵ − ܹ , where ܵ is a spline function defined as in Eq (7), and ܹ  is a piecewise linear approximation of ܵ. If defined on one 
and two intervals, the spline function will be ܵ(ݔ) = ଶݔ	8.5	 − (ݔ)ܵ      and      ݔ	127.5 = ൜4.75	ݔଶ + ,ݔ	85.3125 0 ≤ ݔ ≤ ଶݔ	7.5,8.5 − ݔ	141.563 + 210.938, 7.5 < ݔ ≤ 15, (9) 
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Figure 1: Left: The nonconvex function h(x). Right: The spline functions (solid) and their linearizations 
(dashed) when the α-values are calculated on one (furthest down), two, 10 and 50 equal subintervals. 

 
 

 

Figure 2: The α-values in the different parts of the domain, when calculating them on finer intervals using 
the scaled Herschgorin method. In the initial figure, the same value is used in the whole domain [0,15], 
but as the grid is made finer, smaller values can be used in the separate intervals. Note the α-values 
equal to zero in intervals where the function h(x) is convex. 

respectively. So, if the spline is defined on one interval only, we get a variant of the original αBB underes-
timator, but if instead two intervals are used, a smaller value for α can be used in the first interval, resulting 
in a tighter underestimator.  
In Figure 1, the spline functions and their approximations in the case when the PLF-linearizations are per-
formed in four intervals is illustrated for different refinement levels of the spline functions. An illustration of 
the ߙ-values obtained if smaller subintervals are considered for the spline is provided in Figure 2. If only 
one interval is considered, the largest ߙ-value most be used on the entire interval to guarantee convexity. 
However, if smaller intervals are considered, different values for the parameter can be utilized. In intervals 
where the function is convex even zero values are allowed, resulting in the convex underestimator coincid-
ing with the original function, i.e. no underestimation error occurs. In Figure 3, it is illustrated how the un-
derestimator changes as additional breakpoints are added to the PLF approximations.  
 

4.2 Some test problems 
In Table 1, results from applying the refinement technique to three nonconvex problems (Problems 8.2.1, 
8.2.2 and 8.2.6) from Floudas and Pardalos (1999), as well as, one (Synthes3) from the MINLP Library 
(http://www.gamsworld.org/minlp/) are given. The αGO algorithm is used to solve the problems, and the 
spline calculations are performed once, i.e. the spline function itself is not updated in subsequent itera-
tions. The computer used for the comparisons had a quad core Intel i7 2.8 GHz processor and GAMS/SBB 
was used for solving the reformulated convex MINLP subproblems. Refining the splines further gave  
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Figure 3: The nonconvex function ℎ(ݔ) = ݔ ݊݅ݏ ݔ + -as well as the resulting convex spline un (thick) 10/ݔ
derestimators calculated on one (thick), two (grey), 10 (thin) and 50 (dashed) subintervals of equal length 
with no additional breakpoints (top, left), one additional breakpoint (top, right), three additional breakpoints 
(bottom, left) and seven additional breakpoints (bottom, right) in the PLFs. Note that the breakpoints used 
in the PLFs are independent of those in the splines. 

Table 1:  Results from the comparisons described in Section 4.2. Initial LB is the solution to the MINLP 
problem in the first iteration. The times for calculating the α-, β- and γ-values in the spline (with Wolfram 
Mathematica), solving the MINLP subproblems with GAMS/SBB, as well as the total time are given. The 
instances were solved to the global optimal solution indicated for each problem. However, for Problem 
8.2.6 the instances indicated with (-) were prematurely terminated at a time-limit of 86,400 s. 

 
Spline 

intervals 

Problem 8.2.1 Problem 8.2.2 
αGO 
iters 

Initial  
LB 

Spline 
time (s) 

GAMS
time (s)

Total 
time (s)

αGO 
iters 

Initial 
LB 

Spline 
time (s)

Solution 
time (s) 

Total 
time (s) 

1 12 -15.8 <0.1 4.3 4.4 53 -762.2 <0.1 22.2 22.4 
2 12 -14.4 <0.1 3.9 4.0 47 -539.0 <0.1 18.1 18.2 
4 9 -6.8 <0.1 2.3 2.4 32 -271.4 <0.1 10.0 10.1 
8 8 -5.3 <0.1 1.8 1.9 29 -171.4 <0.1 8.4 8.5 

16 7 -4.7 0.2 1.6 1.9 20 -104.1 <0.1 5.4 5.5 
32 7 -4.4 0.8 1.6 2.5 15 -71.3 0.1 3.7 3.9 
64 7 -4.2 3.0 1.6 4.7 11 -57.1 0.2 2.9 3.2 

128 7 -4.2 11.8 1.6 13.5 11 -50.7 0.3 2.8 3.2 
256 7 -4.1 47.7 1.8 49.6 11 -47.7 0.6 3.0 3.7 
512 7 -4.1 190.7 2.3 193.2 7 -46.3 1.2 3.4 4.7 

Variables (reals/integers): 2/0, 2 transformed (reals/integers): 1/0, 1 transformed 
Glob.opt. -2.02 -1.08 

 
Spline 

intervals 

Synthes3 Problem 8.2.6 
αGO 
iters 

Initial  
LB 

Spline 
time (s) 

Solution
time (s)

Total 
time (s)

αGO 
iters 

Initial 
LB 

Spline 
time (s)

Solution 
time (s) 

Total 
time (s) 

1 8 39.8 <0.1 9.3 9.4 - -2.2E7 <0.1 - - 
2 8 50.8 <0.1 7.8 7.9 - -4.2E6 <0.1 - - 
4 7 59.2 <0.1 5.5 5.6 - -4.2E5 <0.1 - - 
8 5 62.1 <0.1 3.5 3.6 - -1.3E5 0.1 - - 

16 5 63.0 0.2 3.7 3.9 63 -1.6E4 0.4 1000.9 1001.3 
32 5 63.6 0.7 3.1 3.9 37 -7.0E3 1.4 129.5 131.0 
64 5 63.8 2.4 3.3 5.8 22 -2.3E3 5.6 30.8 36.4 

128 5 64.0 9.5 3.4 13.0 13 -1.0E3 23.0 8.7 31.8 
256 5 64.1 37.3 4.0 41.4 11 -6.2E2 88.4 5.7 94.2 
512 5 64.1 147.6 4.2 152.0 10 -4.5E2 358.2 6.9 365.4 

Variables (reals/integers): 9/8, 6 transformed (reals/integers): 2/0, 2 transformed  
Glob.opt. 68.01 -10.09 
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tighter lower bounds in the first αGO iterations of all the problems, as is clear from the results, and often 
also less iterations were required to solve the problem to optimum if increasing the refinement level. How-
ever, the calculations of the parameters for the splines become more computationally demanding as the 
refinement grid is increased. This is especially evident in problems of more than one variable and where 
the variables are nonseparable, since the number of boxes the parameters need to be calculated in is in 
the worst case the product of the number of subintervals for all variables. Therefore, there is a trade-off 
between the number of subintervals and the resulting number of αGO iterations. The increase in grid 
points for the splines did not seem to affect the solution time of reformulated MINLP problem significantly. 

5. Conclusions 
In this paper, it was shown how the solution process of the αGO algorithm could be improved by defining 
the spline convex underestimator on a finer grid than the regular iteratively added breakpoints used in the 
algorithm. The technique works very well for functions where the nonconvex functions are separable. For 
more complex functions however, the refinement grid cannot be too fine due to the computational effort 
required to calculate the spline underestimator. 
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