

VOL. 32, 2013

DOI: 10.3303/CET1332214

CO₂ Capture at High Temperature and Low Concentration on Li₄SiO₄ Based Sorbents

Monica Puccini*, Maurizia Seggiani, Sandra Vitolo

Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy m.puccini@diccism.unipi.it

Solid sorbents based on lithium orthosilicate (Li₄SiO₄) have shown promise for CO₂ capture at high temperature. Improved sorption properties can be obtained by appropriate doping. In this study, different promoted Li₄SiO₄-based sorbents were prepared by addition of potassium carbonate and binary/ternary alkali (Li, K and Na) carbonate eutectic mixtures. The CO₂ sorption properties of the sorbents were investigated by thermal gravimetric analysis (TGA) at different temperatures in the range between 500 and 600 °C and at low CO₂ partial pressure (0.04 atm). The results showed that all the promoters used noticeably improved the CO₂ sorption capacity in comparison to no-promoted Li₄SiO₄. At the optimum sorption temperature of 580 °C, Li₄SiO₄ with addition of 30 wt% of K₂CO₃ showed the best CO₂ adsorption proprieties with sorption capacities of 230 mg CO₂/g sorbent corresponding to a conversion of about 80 %. Besides this sample maintained its original capacity during multiple CO₂ sorption/desorption cycles.

1. Introduction

Carbon dioxide (CO₂) is considered one of the most important greenhouse gases (GHG) among the anthropogenic emissions into the atmosphere due to the dependence of world economies on fossil fuels as energy source. Approximately 85 % of world energy demand is supplied by fossil fuels (Yang et al., 2008), which results in the emission of about $23 \cdot 10^9$ tonnes CO₂/year (Pires et al., 2011). One approach that holds great promise for reducing GHG emissions is carbon capture and sequestration (CCS). Under this concept, CO₂ would be captured from large point source, such as power plants and refineries, and injected into geological formations (depleted oil and gas fields, saline formations, unmineable coal seams) (Soundararajan and Gundersen, 2012).

Among the technologies for CO_2 capture from flue gases, the absorption process using aqueous solution of monoethanolamine (MEA) is the most common and available for industrial applications (Chavez and Guadarrama, 2011). But, the significant energy penalty due to the low operating temperatures (40-150 °C) and the high regeneration energy requirements represent important limitations for its application (White et al. 2003). The flue gases produced after the combustion of fossil fuels in a turbine are usually in the temperature range from 700 to 900 K (Ochoa-Fernández et al., 2006). Consequently, they need to be cooled to the temperature levels required for the absorption process in case a wet-absorption method is chosen for separation. Thus, in recent years emerging technologies operating at high temperature (450-750 °C) are being investigated as alternatives to low-temperature CO_2 capture systems.

A promising approach consists in using suitable metal-oxide based inorganic sorbents that reversibly react with CO₂ at elevated temperature (Wang et al., 2010). Materials containing lithium zirconate (Li₂ZrO₃) and lithium orthosilicate (Li₄SiO₄) seem to be promising CO₂ acceptors in the range of 500-700 °C (Pannocchia et al., 2007). Main advantages of these materials are their high CO₂ capture capacity, lower regeneration temperatures (< 750 °C) compared to other high-temperature sorbents, such as CaO, and their excellent stability that allow operation over a significant number of cycles without losing their sorption capacity. Kato et al. (2005) investigating the CO₂ adsorption properties of Li₂ZrO₃ and Li₄SiO₄ pellets at low CO₂ concentration (500 ppv – 20 vol%) concluded that the CO₂ adsorption on Li₄SiO₄ is more than 30 times faster than that on Li₂ZrO₃ at the same sorption conditions. Furthermore, Li₄SiO₄ shows lower costs of the raw materials involved comparing the expensive ZrO₂ with cheaper SiO₂.

1280

For these reasons, Li_4SiO_4 is considered one of the most promising candidates for the post-combustion CO_2 capture at high temperature and low CO_2 concentrations (following the reaction: $Li_4SiO_4 + CO_2 \leftrightarrow Li_2CO_3 + Li_2SiO_3$). Lithium orthosilicate can theoretically adsorb CO_2 in amounts up to 0.36 g CO_2/g sorbent. In practice, CO_2 capacities up to 35 wt% have been reported at a temperature of 700 °C in pure CO_2 (Kato et al., 2005). Considering the potential applications of these sorbents for carbon dioxide capture from exhaust gas in thermal power plants (low CO_2 concentrations) or for the in situ removal of CO_2 produced in some reactions such as water gas shift (WGS) reaction and steam-methane reforming (SMR), the requested temperature range is between 450 and 600 °C. At these temperatures, kinetic limitations during CO_2 adsorption are still the main obstacle for application of Li_4SiO_4 .

For this reason, various doping methods have been proposed to improve the Li₄SiO₄ reactivity (Seggiani et al., 2011). Different alkali carbonates dispersed in Li₄SiO₄ have been proposed as promoters since such carbonates forms eutectic mixtures with product Li₂CO₃ that melt at high temperatures (> 500 °C) (Seggiani et al., 2013). According to the double shell model proposed for the CO₂ adsorption mechanism on Li₄SiO₄ (Kato et al., 2002), the resultant molten carbonate shell greatly facilitates CO₂ diffusion throughout the product layer compared to the solid Li₂CO₃ shell in pure Li₄SiO₄ case. The objective of this work was the development of novel promoted Li₄SiO₄ based sorbents for CO₂ capture at high temperature and low CO₂ concentration by addition of alkali carbonate and binary/ternary alkali (Li, K and Na) carbonate eutectic mixtures. The promoters were added in several amounts (10, 20 and 30 wt%) to pure Li₄SiO₄ powders synthesized by solid state reaction using crystalline silica. Their CO₂ sorption properties were investigated by thermal gravimetric analysis (TGA) at different temperatures in the range between 500 and 600 °C and at low CO₂ partial pressure (0.04 atm). In addition, the cyclic stability of the selected samples were investigated by carrying out 25 cycles of CO₂ sorption/desorption.

2. Experimental

2.1 Sorbents preparation and characterization

Li₄SiO₄ powders were prepared by the solid state method. Starting materials were reagent-grade Li₂CO₃ and ZrO₂ (from Sigma-Aldrich) in a 2:1 molar ratio. The materials were weighed, mixed, and ground in an agate mortar with a suitable amount of water. Then, the mixtures were dried and calcined in air at 900 °C for 4 h. Both temperature increase and decrease ramping rates were set to 60 °C/h. The resulting powders were ground by agate mortar to break down any agglomeration and then sieved to produce Li₄SiO₄ particles with size below 10 μ m. Li₄SiO₄-based sorbents were prepared mixing 10, 20, 30 wt% of potassium carbonate (K₂CO₃), binary (Li₂CO₃/K₂CO₃) and ternary (Li₂CO₃/K₂CO₃/Na₂CO₃) eutectic carbonate mixtures with the previously synthesized pure Li₄SiO₄ powder. Table 1 shows the composition and melting points of the binary and ternary eutectic mixtures used in this study.

Powder X-ray diffraction (XRD) characterization of pure and promoted Li_4SiO_4 samples prior to and after CO_2 sorption was conducted using a Philips PW 1050/25 X-ray diffractometer with Cu-K α radiation. The accelerating voltage and the applied current were 40 kV and 40 mA, respectively. The XRD patterns were recorded over a 2 θ range between 10° and 70°. Phase identification was verified by comparison against the corresponding Joint Committee Powder Diffraction Standards (JCPDS).

A JEOL 5600 LV scanning electron microscope (SEM) was used to observe the morphology and the promoter distribution in the samples.

2.2 Experimental procedure

Carbon dioxide adsorption on prepared powders was studied using a thermogravimetric analyser (TGA Q500 TA Instrument). About 20 mg of sample were placed in a sample pan and, prior to CO_2 sorption testing, the sample was pre-conditioned and dried in a nitrogen flow (100 mL/min) elevating the temperature (at 10 °C/min) to the operating temperature, till sample weight became stable. Then, the N₂ flow was switched to a mixture CO_2/N_2 containing 4 vol% of CO_2 . The total feed gas flow rate was maintained at 100 mL/min at atmospheric pressure. The weight increase due to CO_2 sorption was recorded as a function of time during the adsorption process lasted 120 min. Besides, to assess the stability of the optimized sorbent twenty-five adsorption/desorption cycles were carried out. The adsorption of CO_2 was carried for 60 min at the desired temperature in 4 vol% CO_2 flow. Afterwards, the feed gas stream was switched to a pure N₂ flow (100 mL/min) and the temperature was raised to 700°C with heating rate of 20°C/min. The sample was kept to the regeneration temperature until it was completely regenerated. The regeneration process lasted about 15 min. After that, a new cycle was carried out.

Table 1. Composition and melting point of binary and ternary eutectic mixtures used as promoters.

Eutectic composition (mol %) ^a	Melting point (°C) ^a
Li ₂ CO ₃ (42.7 %) / K ₂ CO ₃ (57.3 %)	498
Li ₂ CO ₃ (42.5 %) / K ₂ CO ₃ (26.8 %) / Na ₂ CO ₃ (30.6 %)	393

^a Data extracted from NSRDS (1978).

3. Results and discussion

In order to establish the optimum CO₂ sorption temperature, preliminary sorption runs were performed on the pure and some doped Li₄SiO₄ samples at temperatures between 500 and 600 °C. As an example, Figure 1 shows the weight increase of the Li₄SiO₄ with addition of 20 wt% K₂CO₃ as a result of CO₂ sorption from a 4 vol% CO₂ stream at temperatures between 500-590 °C. As can be seen, the CO₂ sorption capacity increases with the temperature between 500 and 580 °C and then decreases at higher temperatures. The same behaviour was observed for the other samples showing that the maximum adsorption of CO₂ after 2 h was reached at 580 °C. This is attributed to the equilibrium temperature of Li₄SiO₄ that was calculated to be about 590 °C at the CO₂ partial pressure of 4.04 kPa (4 vol% CO₂ at a total pressure of 101 kPa).

Since the promoters showed no affinity for the CO₂ capture but contributed to the sorbent weight, the conversion of Li₄SiO₄, X_{Li4SiO4}, was used to assess and compare the effect of the different promoters used on the CO₂ sorption reaction. The percentage conversion X_{Li4SiO4} was calculated by using the equation (1):

$$X_{\text{Li}_{4}\text{SiO}_{4}}(\%) = \frac{\Delta W}{F_{\text{Li}_{4}\text{SiO}_{4}} \cdot r_{s}}$$
(1)

where ΔW is the percentage weight change of the sorbent during the adsorption, $F_{Li_a SiO_4}$ is the weight

fraction of Li₄SiO₄ in the sorbent and r_s is the stoichiometric uptake of CO₂ by Li₄SiO₄, which is about 0.36 g of CO₂/g of Li₄SiO₄. For each series of promoted samples, the CO₂ sorption rate generally increases as a function of the promoter amount added (see Table 2). This can be attributed to a more efficient distribution of promoter over the surface of the Li₄SiO₄ particles. As shown, the addition of 30 wt% K₂CO₃ to pure Li₄SiO₄ powders produced a sorbent which exhibited the best CO₂ adsorption performance in terms of sorption capacity: the adsorbed amount of CO₂ after 2 hours was nearly 23 wt% of the starting material corresponding to a 80% conversion of Li₄SiO₄. Besides, the sorption capacity of the samples prepared by addition of potassium carbonate are higher than those of sorbents prepared with the relative binary/ternary eutectic carbonate mixtures. These results can be related to the formation of a liquid phase of Li-K carbonates occurred on the surface of Li₄SiO₄ particles during the carbonation reaction that reduces CO₂ diffusion resistance to the solid product Li₂CO₃ shell in pure Li₄SiO₄ (Ida and Lin, 2003). While, for the Li-K and Li-K-Na samples a eutectic liquid phase is already present at the start of CO₂ sorption.

Figure 1: CO₂ sorption profiles on the sorbent with 20 wt% K_2 CO₃ added, in 4 vol% CO₂ stream at different temperatures.

1282 Table 2. Percentage conversion of Li_4SiO_4 .

Promoter	10%	20%	30%
K ₂ CO ₃	57.5	75.0	81.4
Li_2CO_3 / K_2CO_3	44.6	72.0	75.3
Li ₂ CO ₃ / K ₂ CO ₃ / Na ₂ CO ₃	57.0	67.4	69.6

As example, the SEM images of the Li₄SiO₄ sorbent doped with 30 wt% of K₂CO₃ and 30 wt% of K₂CO₃/Li₂CO₃ eutectic mixture quenched at 580°C in N₂ before CO₂ sorption are reported in Figure 2. As can be seen, the sample with 30 wt% of K₂CO₃ shows the same morphology (Figure 2b) of the starting Li₄SiO₄ powder (Figure 2a), i.e. porous agglomerates of dense particles with submicron particles of K₂CO₃ dispersed on the particle surfaces. Whereas, dense particle agglomerates with average size of 50 µm were observed in the sample with 30 wt% of K₂CO₃/Li₂CO₃ (Figure 2d). This is attributed to the fusion of the eutectic mixture on Li₄SiO₄ particles during the heating in N₂ to the adsorption temperature (580°C) greater than the reported melting point (498°C). The presence of these large agglomerates with dense morphology allowed to reduce the interface surface for the reaction between gaseous CO₂ and sorbent particles with consequent reduction in CO₂ uptake. In addition, the diffusion of CO₂ through the molten laver of eutectic mixture before reaching the LiaSiOa particle surface may represent an additional diffusional resistance. Figure 3 shows, by means of X-ray analysis, the microstructure changes of the 30 wt% K₂CO₃ doped Li₄SiO₄ before and during CO₂ sorption and after CO₂ desorption. Compared to XRD pattern of the original sorbent (top of Figure 3), XRD pattern of the sorption product (middle of Figure 3) shows that the peaks assigned to Li₂SiO₄ disappeared and that the peaks associated with Li₂CO₃ and Li₂SiO₃ are present instead. This result indicates that during the CO₂ sorption process Li₄SiO₄ reacts with CO2 to become Li2CO3 and Li2SiO3. XRD pattern of the regenerated sorbent (bottom of Figure 3) only shows peaks assigned to Li₄SiO₄: this means that, after CO₂ desorption, Li₂CO₃ and Li₂SiO₃ react to produce again Li₄SiO₄ by releasing CO₂.

The cyclic stability of the Li₄SiO₄ sorbent doped with 30 wt % of K₂CO₃ was investigated by carrying out 25 cycles of CO₂ sorption/desorption (Figure 4). At the end of the first regeneration, a mass loss of about 4% compared to the initial weight of the sample (after preconditioning) was observed. This behaviour can be attributed to the completion of release of bound water from the sorbent. This weight loss justifies the apparent CO₂ sorption capacity loss registered in the second adsorption run. After the first cycle, the CO₂ absorption capacity and capture-regeneration rate remained essentially constant during the subsequent cycles, implying excellent stability. SEM images of one-cycle and twenty-five cycles used sample (Figure 5) shows that the morphology of the sorbent did not change after 25 CO₂ capture-regeneration cycles, supporting the good regenerability properties evidenced by the CO₂ capture/regeneration cycles.

Figure 2: SEM images of the Li₄SiO₄ sorbent doped with 30 wt% of K_2CO_3 (a) and 30 wt% of K_2CO_3/Li_2CO_3 (c) before CO₂ sorption and the same samples (b and d, respectively) heated to 580°C in N₂ and quenched in N₂ to room temperature.

Figure 3: XRD patterns of Li_4SiO_4 sorbent with addition of 30 wt% of K_2CO_3 before (top) and during (middle) CO₂ sorption and after CO₂ desorption (bottom).

Figure 4: Multiple cycles of CO₂ sorption (60 min at 580 °C in 4 vol% CO₂) and desorption on the Li_4SiO_4 sorbent doped with 30 wt% of K_2CO_3 .

Figure 5: SEM images of the Li_4SiO_4 sorbent doped with 30 wt% of K_2CO_3 regenerated after the first cycle (a) and the sorbent regenerated after 25 sorption/desorption cycles (b).

1283

4. Conclusions

In this study, different promoted Li₄SiO₄-based sorbents were prepared by addition of potassium carbonate and binary/ternary alkali (Li, K and Na) carbonate eutectic mixtures for carbon dioxide capture at high temperature and low CO₂ concentration. For each series of promoted samples, the CO₂ sorption uptake and the conversion increased with increasing the promoter amount due to a more efficient distribution of promoter on a larger surface area. The formation of a molten Li-K carbonate shell on the surface of Li₄SiO₄ particles during the carbonation reaction improved significantly the CO₂ sorption rate. These results indicate that CO₂ sorption process is governed by the diffusion of CO₂ within the outer layer of the solid product Li₂CO₃ shell. The addition of 30 wt% of K₂CO₃ produced modified Li₄SiO₄-based sorbents which provided the highest CO₂ sorption capacities after 2h at 580 °C (about 230 mg of CO₂/g sorbent corresponding to a conversion of 80%). Besides, this sorbent maintained its sorption properties after 25 sorption/desorption cycles, displaying a good prospect for application in the separation at high temperatures of CO₂ from fuel-fired power stations as well as in the in situ removal of CO₂ produced in some reactions such as SMR and WGS reactions to enhance hydrogen production.

References

- Chavez R.H., Guadarrama J.J., 2011, Optimized process from post-combustion CO₂ capture in thermoelectric power plant using structured packing, Chemical Engineering Transactions, 25, 69-74.
- Kato M., Yoshikawa S., Nakagawa K., 2002, Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations, Journal of Materials Science Letters, 21(6), 485-487.
- Kato M., Nakagawa K., Essaki K., Maezawa Y., Takeda S., Kogo R., Hagiwara Y., 2005, Novel CO₂ absorbents using lithium-containing oxide, International Journal of Applied Ceramic Technology, 2(6), 467–475.
- Ochoa-Fernández E., Rønning M., Grande T., Chen D., 2006, Synthesis and CO₂ capture properties of nanocrystalline lithium zirconate, Chemistry of Materials, 18, 6037–6046.
- Pannocchia G., Puccini M., Seggiani M., Vitolo S., 2007, Experimental and modelling studies on high temperature capture of CO₂ using lithium zirconate based sorbents, Industrial & Engeneering Chemistry Research, 46, 6697-6706.
- Pires J.C.M., Martins F.G., Alvim-Ferraz M.C.M., Simões M., 2011, Recent developments on carbon capture and storage: An overview, Chemical Engineering Research and Design 89, 1446-1460.
- Seggiani M., Puccini M., Vitolo S., 2011, High-Temperature and Low Concentration CO₂ Sorption on Li₄SiO₄ based Sorbents: Study of the used silica and doping method effects, International Journal of Greenhouse Gas Control, 5, 741-748.
- Seggiani M., Puccini M., Vitolo S., 2013, Alkali promoted lithium orthosilicate for CO₂ capture at high temperature and low concentration, International Journal of Greenhouse Gas Control, in press, DOI: 10.1016/j.ijggc.2013.04.009.
- Soundararajan R., Gundersen T., 2012, Coal based power plants using oxy-combustion for CO₂ capture: pressurized coal combustion to reduce capture penalty, Chemical Engineering Transactions, 29, 187-192.
- Wang J., Manovic V., Wu Y., Anthony J., 2010, CaO-based sorbents for capturing CO₂ in clean energy processes, Chemical Engineering Transactions, 21, 187-192.
- White C.M., Strazisar B.R., Granite E.J., Hoffman J.S., Pennline H.W., 2003, Separation and capture of CO₂ from large stationary sources and sequestration in geological formations coal beds and deep saline aquifers, Journal of Air Waste Management Association 53, 645–715.
- Yang H., Xu Z., Fan M., Gupta R., Slimane R.B., Bland A.E., Wright I., 2008, Progress in carbon dioxide separation and capture: A review, Journal of Environmental Sciences 20, 14-27.

1284