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In any plant, it is the pressure that drives convective flow of mass from one part to another. A systematic 
method of modelling the flow and the pressure distribution is derived based on a finite-volume approached 
captured in a graph. This approach is conform with our network modelling method “visual modelling”. 

1. Background 
Most process models are based on a network of finite volumes. Chemical engineers refer to it as the control-
volume approach (Preisig, 2010). We look at the network as a graph, where the volumes represent the 
capacities and the arcs the transfer of extensive quantities, more precisely mass flow, usually a vector of 
component mass flows, energy flow, usually conductive and radiation heat flow, mechanical work, volume 
work and the like. Whilst mass has a considerable inertia, the pressure distribution is happening at the speed 
of sound, thus comparatively very fast. In most cases, the dynamics of the pressure distribution is not of 
interest in chemical processes and one assumes it to “just happen”, technically speaking one assumes event-
dynamics. The exception is the description of explosions, detonations – any system that operates on the time 
scale of pressure wave propagation in a system. But why do we need the pressure distribution? First reason is 
that convective flow is driven by the pressure difference and the second one is that the material properties are 
a function of pressure as it enters the equation of state and thus the energy functions. 

2. A Sample System 
To illustrate the approach, we introduce a simple, but representative common part of a plant (Fig. 1). It is a 
near barometric pressure inside. In addition the tank has a feed pipe connected to the water supply on the top, 
and the bottom outlet is connected to the drain at barometric pressure.  
The mechanics of the process are apparent: As one puts water into the tank it starts filling up, whilst the water 
outflow is driven by the pressure in the tank. Latter is essentially the barometric 
pressure plus the hydrostatic pressure exerted by the water. The flow into the tank is 
a free jet that extends from the end of the pipe to the water surface. The purpose of 
the breathing pipe is to allow for air to go in and out of the tank so as to equalize the 
inside pressure with the outside pressure. This is a dynamic process and if the tank 
level changes fast, the breathing pipe's resistant will have the effect that the pressure 
inside and outside are not equal. 
 
The modelling of the process is done step by step with the first one being an 
abstraction of the plant as a network of capacities and flows of extensive quantities.  

2.1 A first topology 
The modelling approach we call “visual modelling”.  The plant model is represented 
as a graph choosing the nodes to represent capacities and the arcs to represent 
flows of extensive quantities. When establishing this graph, we make the first set of 
time-scale assumptions.  
Any system we describe uses three time domains, one in which the associated 
capacities are considered constant, one in which they are dynamic and change 

Figure 1:   
Sample process 
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visibly with time, and one in which things just happen, being event-
dynamic. The constant systems, we call reservoirs. Shown as half 
circles they are open on one side extending to infinity. For 
dynamic systems we have two cases to consider, namely 
distributed systems and lumped systems. Lumped systems are 
characterised by intensive properties not to be a function of the 
position in contrast to the distributed systems where the intensive 
properties are a function of the position. Both type of systems are 
of finite dynamic nature and are mathematically formulated as 
differential equations. Lumped systems are ordinary and 
distributed systems are represented by partial differential 
equations. In the third domain we have event-dynamic systems, 
which, when lumped are shown as simple bars and when 
distributed as rectangles.  The initial topology always contains 
maximal information.  Any change towards more detail requires an 
extension of the graph splitting capacities and adding more 
transfers, make the granularity of the model finer (Preisig, 2010).  
Our first and “maximal” graph is shown in Fig. 2. Here the oval 
nodes represent the distributed capacities as labelled, whilst the 
bars represent the boundaries between the respective capacities. 

2.2 More time-scale assumption 
Further simplifications are based on additional time-scale 
assumptions. In this case, the next step requires a split of the 
plant model into two separate time scales. Since we assume that the pressure wave propagate very fast, we 
get an event-dynamic model for the pressure distribution, whilst the dynamics of the mass distribution 
happens in the “visible” dynamic range. Both are embedded in a set of reservoirs that represent the process-
embedding environment, which are considered constant in terms of their intensive properties and infinitely 
large in terms of their capacity. So we first split the description into a model for the event-dynamic part and the 
dynamic part, the first one being the momentum propagation and the second the mass. 
The left part of Fig. 3 shows the event-dynamic model, the right the dynamic model. As mentioned, we use 
rectangles for the distributed capacities and circles for the lumped system. The black rectangles show 
systems that reduce to a plug-flow only and are reduced to a simple dead-time for the transport; whilst the 
coloured rectangles also consider the distribution in the intensities, in particular the pressure. The time-scale 
assumptions can be extended as demonstrated on the water jet, where on the right-hand-side it is assumed 
instantaneous so no significant dead-time associated with the water passing from the end of the pipe to the 
surface, whilst on the left-hand-side, it is modelled as an event-dynamic distributed system. We could consider 
making the same assumption for the pipes, thus the water pipe in and out and the breathing pipe. This then 
results in what most people would probably write as their very first model for the behaviour of the plant in 
terms of mass, namely, water accumulated per unit time in the tank is the difference between what is coming 
in and what is going out.  

3. Model Equations 
The mathematical model is assembled from the models of the capacities and the model of the transfers. The 
equations for the different parts are collected in the table below. The table's first column contains a description 
of the model component, the second introduces a label for each equation which we use below to discuss the 
overall equation pattern. The third contains the equation. 
The first equation describes the mass conservation in vector form for a single homogeneous material for a 
lumped system. It simply says that the accumulation is equivalent to the sum of all the physical inflows minus 
the physical outflows. The representation makes use of the underlying directed graph for the physical 
topology. There we introduce the reference co-ordinates for each flow, represented by the directed arcs, the 
arrows. The matrix  is the row of the incidence matrix of the graph for system s. The incidence matrix has 
as row the nodes (systems / capacities) and in the columns the arcs (transports). So for the mass balance of 
the tank the mass conservation equation  is . 

Figure 2: A first graph 
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Note on how we use the indexing scheme to indicate the flows and its direction: The source is the first part of 
the index using the identifier of the system being at the tail of the directed arc. The vertical bar is the separator 
and the second index is the identifier of the sink, the head of the directed arc. The row for the fluid in the tank 
of the incidence matrix thus is all zeros except the columns for the flow 3|W and W|4. 
For the pressure distribution we use the event-dynamic model for which the slow model is entering as a snap 
shot, that is, an implicit singular perturbation is done assuming a “pseudo steady state” for the tank’s mass. 
The geometry relates the volume to the level in the tank and the material properties related the state mass to 
the volume, which is one of the critical pieces of information required.  

Table 1Model equations 

Component description Symbol Equation 
Mass of lumped system  

 
Mass balance lumped (dynamic capacity s) 
Mass balance lumped / distributed event-dynamic  
Energy balance (dynamic capacity s)   
Energy balance (event-dynamic s)   
Mass flow    
Kinetic energy flow m   

Potential energy flow m   

Figure 3: Splitting the time-scales: left event-dynamic, right dynamic 
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The plant model consists of the components:  

• The fluid being incompressible – for all practical purposes. 
• Pipes that are assumed to be cylindrical. 

Equations             

Assumptions (A)  
Facts (F)        cylindrical:   

 

 
• Tank 

Equations  

Constant volume 

• Tank event-dynamic liquid phase or gas phase: 
Equations           

Assumptions (A)  
Facts (F)        cylindrical:      no friction:   

 

• Ditto, but dynamic liquid phase: 

Component description Symbol Equation 

Volume work flow m   

Friction work over transport system s   

Pressure drop due to friction transport system s  
for cylindrical geometry and incompressible fluid 
Darcy-Weisbach model 

  

Friction factor model for laminar flow   

Friction factor model for turbulent flow   

Friction factor model for highly turbulent flow   

Reynold number 
  

Geometrical relation   

Geometrical relation   

Geometrical relation   

Geometrical relation   

Geometrical relation   

Property   

Rigid container   

Note that we distinguish between accumulation and 
flow. For the first we use the dot-decorator, whilst for 
the second the hat-decorator. Obviously both have the 
same physical units. 
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Equations          
Assumptions (A)  
Facts (F)        cylindrical:      no friction:   

 

• Ditto, but dynamic gas phase: 
Equations          
Assumptions (A)  
Facts (F) Negligible:      cylindrical:      no friction:    

negligible:   
 

• Free jet that is assumed to be cylindrical 
Equations           
Assumptions (A)  
Facts (F) Negligible:      cylindrical:      no friction:    

negligible:   
 

3.1 Assembling the model for the plant 
In view of the page limits we continue with an event smaller, simplified version of 
the given plant: It consists of a series of flow units that transport an incompressible 
fluid. The model assembles from the mass and energy balance for the tubes and 
the boundaries between the tubes: 

The plant's position 
in the state space 
is defined by the 
conditions on the 
boundaries, which 
in this case are the 
pressures at the 

interfaces 1 and 4. These are the pressures of the respective connected reservoirs. 
In more complex models, also the other intensive properties of the reservoirs enter 
the definition space, for example the composition. Further, we require the geometry 
of the pipe system, here we assumed cylindrical pipes.  In addition we need the 
location of the interfaces in the space, thus the relative height measurements. 
The mass balances for the interfaces equal the flows, thus there is only one overall 
flow in the system. The energy balances of the interfaces equal the pressure on 
either side of the interfaces. This leaves 3 quantities to be computed, namely the 
mass flow through the system and the pressures at the interfaces 2 and 3. These 
can be obtained from the three energy balances for the pipes. 
For laminar flow systems, the friction term is linear in the mass flow. So one can 
rewrite the equations in a matrix format:  

  
with the vector    being a vector of constant friction coefficients.  
 
The open tank adds the element of branching in the network and one of the nodes 
being dynamic with respect to mass, namely the contents. 

Pipes A,B,C     

Interfaces 2,3   

Interfaces 2,3    

Capacities   
 

 

Capacity W    
 

 
 

 

 
 

Figure 4: Pipes only 
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The main feature here is that the level in the tank is a function of the slow part, namely the dynamic mass 
balance. Also the flow through the breathing pipe is determined by the dynamics in the tank. The dynamics of 
the water is given by the flows in and out, whilst the dynamics of the gas phase, the air, is driven by the 
change in the volume of the water in the tank and the fact that the total volume is constant. The capacity 
model applicable to P, J, O, P uses the mass balance for the same systems and the density.  

4. Conclusions 
The analysis of flow systems requires first a split into two separate descriptions for mass and mechanical 
energy. Whilst the mass balances are dynamic, the mechanical energy balances are event-dynamic assuming 
that the pressure propagates much faster than the level changes. Latter is used by implementing a singular 
perturbation assumption for all the systems or what in chemical engineering is usually referred to as pseudo-
steady state. 
The presented analysis can be further abstracted, which exploits the structural properties further, though it 
gets harder to communicate. Specifically, the depicted graph can be seen as a bipartite graph, with one set of 
nodes being the interfaces and the other being the capacities. The analysis shows that the fields appear as 
the driving forces for the transport in one half of the bipartite graph. The analysis though takes more space 
than we have available here, so we must leave this extension to a later exposition. 
The fact that one requires the boundary conditions of the event-dynamic system to be defined seems quite 
obvious even though that is often a piece of intense discussion in practice.  
How can these results be used? One of the main applications is in alarm and warning handling. Large plants 
suffer of alarm flooding and modern control systems are starting to do active alarm hiding by constructing 
alarm management systems (Hollender et al, 2007). Latter found some significant industrial interest for a good 
number of years, but has manifest itself clearly with the two patents (Sköld et al, 2010) and (Thurau, 2011). 
The apparent other application is Hazop analysis as documented in (Venkatasubramanian, 2000) and 
(Dunjóa, 2010). 
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Properties   

Interfaces   

Interfaces   
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