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A neural network based methodology for the modelling of a sequencing batch reactor (SBR) for producing 
Polyhydroxybutyrate (PHB) with Mixed Microbial Cultures (MMC) is proposed. The advantages of applying 
MMC for more effective production of PHB have already been documented and mechanistic models were 
developed, however, the lack of good understanding and the ability to describe phenomena involved in the 
complex nature of the bioprocess led to unsuccessful release of reliable and accurate mechanistic models. 
In order to perform successful process control and optimisation, empirical models developed from process 
operational data should be capitalised. Bootstrap aggregated neural networks are used in this study to 
enhance model accuracy and reliability. In the case of PHB production through SBR using MMC, the two 
feeding substrates of acetate and ammonia were found to play dominant roles in PHB production trajectory 
and different process operation regimes exist depending on the concentrations of these substrates. This 
paper proposes a method for the classification of such operation regimes and building neural network 
models corresponding to these regimes using bootstrap aggregated neural networks.  

1. Introduction 

PHB is one of the constituents of Polyhydroxyalkanoates (PHAs) synthesized by bacteria that are 
nourished by acetate. PHAs share similar mechanical properties to those of polypropylene, with a 
fundamental difference of being completely biocompatible, biodegradable and being produced from 
renewable biological resources. In addition to the conventional applications known for petrochemical 
plastics, PHAs have already found their place in surgical applications for implants, sutures and surgical 
pins. Therapeutic applications of PHAs were reported for controlled release of active pharmaceuticals and 
carriers of nutrients. Applications of PHAs in artificial organs, artificial blood vessels and materials for 
wound treatment based on biocompatibility of the PHAs were published by Chen (2010).  
Since the 1980s many companies have tried to commercialise PHA on a pilot or the industrial scale. Chen 
(2009) tabulated more than twenty companies engaged in production of PHA in UK, Austria, Germany, 
USA, Japan, Brazil, Italy and China. Although some of the PHA related projects were terminated due to 
relatively stable petroleum prices, some other companies such as ADM Metabolix (USA) and Bio-On (Italy) 
produced PHA in a scale of fifty and ten thousand tonnes per year respectively (Chen, 2009). The main 
barrier in widespread production of PHAs has been the cost difference in comparison with the petro-
products. In 1998, Biopol, a commercially available bioplastic product, was marketed at around 17 times 
the price of synthetic plastic (Ramadas et al., 2010). This price difference was reduced to 9 euro/kg for 
PHAs versus 1 euro/kg for synthetic plastics in 2002 (Serafim et al., 2004). Despite all efforts, production 
cost of PHA is still considerably higher than the equivalent petrochemical plastics.  
In order to minimize the overall cost of PHA, production steps should be identified and optimized 
accordingly. Large scale production of PHA occurs via microbial fermentation. Development and selection 
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of the best feeding strain, optimization of the shake flask step, pilot plant and industrial scale up studies 
along with the PHA extraction and purification methods are the main development stages (Chen, 2009).  
PHAs are intercellular products of various microorganisms. More than 300 different microorganisms have 
been documented capable of synthesizing PHA. Although industrial production processes are based on 
the use of pure cultures, development of MMC by cloning microorganisms with the PHA synthase genes 
has recently gained attention. Application of MMC enables process operation with no need for sterilization 
resulting in cost effective production. Additionally, application of a mixture of organisms with different 
properties maximise production in varying operation conditions (Dias et al., 2006).  
Optimisation of PHA production from MMC in SBR using a mechanistic model is reported by Dias et al. 
(2005), however, the development of detailed mechanistic models is very challenging. This paper presents 
a data driven modelling method through operating regime decomposition and bootstrap aggregated neural 
networks. Neural network models offer a simple procedure to build relatively accurate models from 
process operation data. Additionally, these empirical models open new windows in the application of 
optimization techniques addressed for this type of processes.  

2. Process operation regimes 

2.1 Classification of process operation regimes 
Good process understanding is the key for accurate process modelling. With this aim, the mechanistic 
model developed by Dias et al. (2005) was used to investigate classification of different operation regimes. 
A series of factors were defined to scrutinize PHB production curves over production time as well as the 
curves of acetate and ammonia concentrations. Based on these factors, a number of qualitative operation 
regimes were identified to specify the state of the batch at any time during batch progress. Figure 1 
illustrates the nine most dominant and important Regime Types (RT). Each plot consists of three subplots 
demonstrating acetate concentration on the top, ammonia concentration in the middle and PHB 
concentration at the bottom.  
In the first regime (RT1), the two feeding substrates of acetate and ammonia are present in the medium 
and hence a gradual accumulation of PHB is observed. In the second regime (RT2), complete depletion of 
acetate occurs while ammonia is in excess. Based on experimental results, it was concluded that 
whenever ammonia was present in the medium, cell growth and PHB formation occurred simultaneously 
(Dias et al., 2005). During the course of this regime, PHB concentration augmented until acetate complete 
exhaustion occurred. After this point, biomass concentration continues to increase in reflect of further 
ammonia consumption and depletion of PHB as a source of energy for metabolic activities of the cells. In 
Figure 1, the point when acetate concentration value becomes relatively steady is denoted by (▽) on the 
acetate and PHB subplots.  
In the third regime (RT3), ammonia consumption rate decrease to a small value followed by complete 
exhaustion of acetate. In this case, cells have already started to consume PHB as an energy source for 
cell growth and metabolic activities in the absence of an external carbon source. In Figure 1, the ammonia 
consumption halt point is depicted by (△) on both ammonia and PHB subplots. In the fourth regime (RT4), 
unlike RT2, ammonia fades away prior to acetate depletion. In this case, biomass concentration 
undergoes an initial increase followed by a stagnation stage in the absence of the nitrogen source. In this 
regime PHB constantly increases by continuous consumption of the carbon source. 
In the fifth regime (RT5), unlike the third regime, complete depletion of ammonia occurs prior to the 
complete consumption of the acetate. In this case, cell growth and PHB formation continue until there is no 
ammonia in the medium. After this point up to the point when acetate is completely consumed, no further 
growth occurs in the biomass; however, PHB is formed by consumption of the carbon source. When both 
carbon and nitrogen sources are wiped out, PHB is consumed as an energy source.  
In the sixth regime (RT6), acetate concentration relatively stabilises near a constant value followed by 
complete exhaustion of ammonia. In this regime, biomass concentration reaches a maximum value in 
reflect of total consumption of ammonia. Afterwards, PHB accumulation continues until most of the cell 
cultures reach their maximum capacity of preserving PHB as their intercellular product. Acetate 
consumption rate reduces to a small value based on the carbon needs of cells for their metabolic activities 
and further augmentation of PHB by the unsaturated cells. In this regime, PHB formation was not fully 
accomplished by the end of the batch. 
The seventh regime (RT7) appears following the sixth regime when sufficient time is allocated to the 
process until a steady positive value for PHB is obtained. This point in time is demonstrated by (+) signs 
on the PHB subplots in Figure 1. The eighth regime (RT8) appears by further continuation of the seventh 
regime when the total PHB concentration remains at its maximum value for over 10 % of the total process 
analysis time interval. This point in time is illustrated by vertical (O) signs on the PHB subplots in Figure 1. 
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In the ninth regime (RT9), PHB concentration reaches a maximum constant value, maintains that 
concentration for more than 10 % of the total analysis time and then PHB depletion occurs due to 
complete acetate depletion used for metabolic activities of cells. 
It is important to note that only the most dominant and important operation regimes are introduced in this 
paper and it does not reflect all the regime types obtained from simulation results. 
 
        RT1     RT2             RT3 

          
        RT4     RT5             RT6 

          
        RT7     RT8             RT9 

         
Figure 1: Qualitative demonstration of the nine operational regimes for PHB production under MMC 

2.2 Process characteristics 
The PHB production cycle by mixed microbial cultures has a “feast” phase and a “famine” phase in SBR 
operation. The “feast” phase is a state of operation in which nutrition required for either cell growth or 
formation of the microbial product is available in the operational system. On the other hand, in the “famine” 
phase at least one element for microbial production is absent. Although PHB decreases in “famine” phase, 
its occurrence is inevitable since it plays a crucial role in the process feasibility of the SBR operation. The 
physiological adaptation of cells during a period of nutrient shortage will result in a higher PHB formation in 
the subsequent “feast” phase. The time duration and the routine of executing the “famine” phase play 
important roles in the optimisation of the sequential batch operations (Dias et al., 2005).  
In the “feast” phase of MMC, unlike the most pure cultures, cell growth and PHB accumulation occur 
simultaneously. Looking at Figure 1, it may be concluded that excess acetate (with consideration on 
operational pH range) directs the SBR operation to the “feast” phase in order to maximize PHB formation. 
On the other hand, ammonia feeding is the key factor in maximizing volumetric productivity of the SBR 
since it directly affects the cell growth rate. However, high ammonia concentration results in excess growth 
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and deficiency of the carbon source for PHB formation and eventually for metabolic activities. Low 
ammonia concentration favours PHB formation with the cost of low volumetric productivity. A trade-off 
solution is required for optimization purposes (Dias et al., 2005).  

2.3 Characterisation plot 
With the aim of characterizing operational regimes based on initial acetate, ammonia and biomass 
concentrations over batch progression time, a series of more than ten thousand simulated batch 
operations were run and scrutinized systematically. Figure 2 shows the regime types at four consecutive 
progression times for a given initial biomass concentration of 50 millimoles of carbon per litre (C-mmol/L). 
In Figure 2, the parameters used for n, m, t0, t1, t2, t3, and t4 are 350 millimoles of nitrogen per litre  
(N-mmol/L), 9,000 C-mmol/L, 0 hours (h), 10 h, 20 h, 30 h, and 300 h respectively. These values were 
selected in order to generate characterisation plots illustrating different regime types and their 
transformation. The characterisation plot can be used to estimate the state of a batch as defined by the 
regime types at any time during a batch progress. A point coordinated by the initial acetate and initial 
ammonia concentrations on a characterisation plot of a specific progression time (∆t), lies in an area 
associated with a regime type for a given initial biomass concentration. Persecution of that coordinate on 
different characterisation plots drawn for various progression times for a given initial biomass 
concentration provides an overview for the batch progression route.  
If a characterisation plot was drawn in the beginning of the process, a full area of RT1 would be expected 
as both controlling nutrients are present at this stage. With batch progression, for any pair of acetate and 
ammonia concentrations, depending on the order of depletion, either RT2 (acetate depletion) or RT4 
(ammonia depletion) will follow. Further progression of a batch operating in RT2 will be followed by total 
consumption of PHB by growing cells. The ammonia concentration decreases to zero and batch process 
starts to operate in RT3. 
On the other side, two different operational regimes can be derived by further progression of RT4. RT5 
appears when acetate concentration is exhausted after complete exhaustion of ammonia. However, in 
RT6 acetate consumption rate decreases to zero while acetate is still in excess. Operational regimes RT7, 
RT8 and RT9 consequently appear over time with further progression of RT6. 

 

Figure 2: Characterisation plots 

Looking at the first plot in Figure 2 (∆t1=t1-t0), five of the operational regimes are shown for different 
combinations of initial acetate and ammonia concentrations. In the second plot (∆t2), further progression of 
the regimes is shown following the pattern previously discussed. Additional batch progressions are shown 
in the third and the fourth plots. As illustrated, there is no regime change over time for a batch operating in 
the fifth regime RT5. Looking at these plots, it is possible to identify a border curve between the RT5 
regime area and the regime areas of RT4, RT6, RT7, RT8 and RT9. This curve separates the “feast” 
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phase operating regimes from the “famine” phase operating regimes. Based on the carbon-nitrogen ratio 
of the initial nutrient concentrations, it would be possible to indicate whether a batch process would 
operate in a “feast” or a “famine” phase for a given initial biomass concentration. 

2.4 “Feast” and “famine” phase border curve equation 
Mathematical equations of the border curve separating the “feast” operation regime area from the “famine” 
operation regime area on the characterisation plot can play an important role in the process optimisation. 
Based on the generated simulation data, the following mathematical equations are proposed to 
characterize the border curve as a function of initial biomass concentration for a mature batch as depicted 
in Figure 2. 
 
Y - 0.036 ( X - ( 4.5 Z + 222.6 ) ) = 0,   Z < 103    (1) 
Y - 0.036 ( X - ( 4.5×10-4 Z2 + 2.25 Z + 3104.4 ) ) = 0,  103 < Z < 104     (2) 
 
In equations (1) and (2), X, Y and Z are the initial acetate, ammonia and biomass concentrations 
respectively in C-mmol/L, N-mmol/L and C-mmol/L. These equations estimate a border curve on the 
characterisation plot for a given initial biomass concentration.  

3. Prediction of optimal batch time using bootstrap aggregated neural networks 

Developing an optimal operation strategy requires good understanding of the process and an accurate 
model of the process. Neural networks have emerged as a powerful tool in developing nonlinear models 
for highly nonlinear industrial processes. Development of neural network models based on process input-
output data is relatively straightforward and their models have been proven to be a powerful representation 
of complex nonlinear behaviour.  
 

  
 

Figure 3: Optimal number of neurons for the individual neural networks 

  
 

Figure 4: Model prediction performance on unseen validation data 

As mentioned in this study, a successful PHB production batch undergoes the “feast” operation regime 
route. In order to provide a model capable of predicting batch completion time, it is essential to train the 
model with data obtained from batch processes operating in the “feast” operation regimes. In order to form 
an appropriate operational data set using a process simulation program, equations (1) and (2) were 
applied. The neural network model inputs are initial biomass concentration, acetate feeding concentration, 
and ammonia feeding concentration. The neural network model output is the time when PHB production 
reaches its maximum value (indication of optimal batch completion time).  
Ten random values were selected in the range of 20 to 4,000 C-mmol/L for initial biomass concentration. 
Similarly, five values were nominated randomly in the range of 1,000 to 90,000 C-mmol/L and 60 to 2,000 
N-mmol/L for each of the acetate and ammonia feeding concentrations. In the case study, a set of data 
was stored for 100 batches operating in the “feast” operation regimes while the other 150 batches were 
undesirable operations. Thirty percent of the data was reserved as the unseen validation data while the 
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remaining was used for model development. Data was scaled to the range of -1 and 1 prior to model 
development. The bootstrap aggregated neural networks (Zhang, 1999) are applied to predict optimal 
batch completion time (occurrence of the seventh operation regime type). Bootstrap re-sampling with 
replacement was used to generate 40 replications of the model development data. Each replication was 
randomly partitioned into a training data set and a testing data set. Each of these pairs is used to build a 
neural network model. For each neural network, the optimal number of hidden neurons is determined 
through cross validation, i.e. the network with the lowest SSE (sum squared errors) on the testing data is 
considered as having the optimal number of hidden neurons. The individual networks are then combined 
to give the aggregated neural network model. The bootstrap aggregated neural network models provide a 
more robust prediction capability. Moreover, it is relatively easy to deliver model prediction confidence 
bounds for aggregated models (Zhang, 1999).  
Figure 3 shows optimal numbers of hidden neurons for each of the 40 neural network models. Predictions 
from these 40 models were then combined to give the final model prediction. Figure 4 shows the predicted 
and the target values for the optimal batch completion time on the unseen validation data set. It can be 
seen from Figure 4 that the model predictions are quite accurate.  

4. Conclusions 

Optimal production of PHB in SBR requires accurate modelling of the process. With this aim, process 
behaviour was scrutinised to define a number of factors enabling operation regime classification. Based on 
those factors, nine of the most dominant and important operation regimes were defined and 
characterisation plots were drawn to qualitatively model process progression routine based on its initial 
state. Further studies of the characterisation plot led to providing a mathematical representation for the 
border between the “feast” and “famine” phase operating regimes. This equation can differentiate a 
characterisation plot into a “feast” and a “famine” operation regime area based on the batch initial state. 
Knowing that the PHB production occurs in the “feast” operation regime area, the bootstrap aggregated 
neural network modelling technique was employed to develop models predicting the optimal batch 
completion time based on initial concentrations of the biomass, acetate and ammonia. It was 
demonstrated that the bootstrap aggregated neural network model can give accurate predictions.  
For optimisation of a SBR producing PHB with mixed microbial cultures, both “feast” and “famine” 
operational regimes should be considered. Production occurs in the “feast” phase; however, the “famine” 
phase plays a crucial role in process feasibility. The optimal SBR cycles should operate near border curve 
of the characterisation plot differentiating the two “feast” and “famine” operation regime areas. The 
empirical model proved to be sufficiently accurate to estimate production batch competition operating 
under the “feast” phase. However, optimal duration of the “famine” phase requires further investigation. A 
long “famine” phase increases stability of the cell culture at the expense of losing some of the PHB 
products. 
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