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Abstract 
 
This paper describes a production scheduling model that can be run for an emulsion 
polymerization (EP) production process. This scheduling model is used to maximize the total 
profit of the production process by calculating a production plan which optimizes costs and 
profits. These costs include production, reactor cleaning, component storage and purchasing of 
raw materials. It is further noted that the model is structured as a State-Task Network. To 
ensure feasibility we have introduced new constraints for the task assignment. All coding was 
done in AIMMS. 
 
The model is tested with 2 case studies that represent an EP production process (A smaller and 
a larger problem), in which we have varied the process topology, the number of raw materials 
and products. In addition a solver comparison was done from which we found that GUROBI can 
handle the problem most effectively. 

1. Introduction 
Emulsion polymerization (EP) production plants produce a large variety of products that are in 
many cases based on a small group of seed latexes (i.e. dispersion of submicron particles in 
water that are colloidally stable). Generally the production of latex products are performed in a 
semi-batch fashion. Furthermore, each product group consists of multiple final products, i.e. 
containing different polymer grades. With extensive production lines like these, scheduling is a 
critical issue and crucial for optimal profit. 
 
In the polymer market, the damend can vary a lot in time and a manufacturer will have to be 
ready to adapt to these changes. With a planning and scheduling model a quick response is 
possible without overproducing or losing money on unnecessary production costs, see 
Oldenburg et al. (2008). And Mendez et al. (2006). 
 
In this a scheduling model for an emulsion polymerization (EP) production process will be 
developed. In addition the scheduling model is tested for performance on a case study. 
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 Figure 1: Process overview for the emulsion polymerization process, with reactors, storage and 
streams. 

2. Problem statement 
The focus is on a latex production process, where monomers, water phase and initiator are fed 
to intermediate reactors to produce a seed latex. The seed latex may be stored and then be 
further processed in a secondary reaction setting where we produce the final product groups. It 
is further assumed that there is isothermal production and that there is no heat loss during 
reaction. The production time for a reaction requires 3-8 hours and the fouling of the reactor 
depends on the number of processed batches.  In figure 1 a topology for the process is given.  
 
A State-Task Network approach is used for the production scheduling model, as suggested in 
Pantelides et al. (1993a, 1993b), which assumes a discrete time horizon over fixed intervals. 
 
Given the emulsion production process sketched above that should satisfy a demand of 
different products over time, with known storage and reaction volume limits, this problem is 
concerned with maximizing the profit margin by creating an optimal production schedule, i.e. the 
timing and quantities of the batches. 
 

3. Model development 
Objective function 
In the current formulation of the objective function the utility costs are not modelled. However, a 
production cost is added based on the batch volume, which contains costs for heating, 
preparation and maintaining the reactor. This leads to the following objective function, in which 
the value and costs of component s and the costs of task i on unit u for each time interval t ; 
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(ݐ݂݅ݎܲ)ݔܽܯ =(ܦ௦,௧ ∗ ௦,௧ܤ)௦)௧௦−݁ݑ݈ܸܽ݁ݐܽݐܵ ∗ (௦ݐݏܥ݁ݐܽݐܵ −௧௦ (ݐ݊݁݊݉ܥ௦,௧ ∗ ℎ,௨,௧ܿݐܽܤ)௦)௧௦−ݐݏܿ݁݃ܽݎݐܵ ∗ ,௨)௧௨ݐݏܿ݊݅ݐܿݑ݀ݎܲ  

,ݏ∀  ݐ
 
 
[1] 

 

Component balance 
In equation 2 the mass balance for each component (also named state) s at time interval t is 
given, in this mass balance the previous amount of a state is given by components,t-1. The 
produced amount of state s is given by the summation of ߙ,௦*Batchiut where ߙ,௦ is the fraction of 
a batch that is turned into product. The amount of state s consumed is given by the summation 
of ߚ,௦*Batchi,u,t, in which ߚ,௦	is the fraction of state s consumed during a single batch. As,t and 
Bs,t are respectively the sales and purchasing of state s at time t. 
௦,௧ݐ݊݁݊݉ܥ  = ௦,௧ିଵݐ݊݁݊݉ܥ +  ,௦∈ߙ ೠ்∩ௌைೞ௨ ∗ ℎ,௨,௧ିఙܿݐܽܤ −  ,௦∈ߚ ೠ்∩ௌூೞ௨ ∗ −ℎ,௨,௧ܿݐܽܤ ௦,௧ܣ + ,ݏ∀ ௦,௧ା௦்ܤ   ݐ

 

           [2] 
Task assignment 
The binary value Wi,u,t is introduced to ensure that only one task i during a time period t is 
executed on unit u. When the binary value is equal to 1 a task ݅ ∈  is executed on a production	ܫ
unit ݑ ∈ ܷ at time ݐ ∈ ܶ. The constraint that describes this is given in equation 3. The value ߪ 
ensures that a unit cannot be used for a different task during the time period of task i: 
   ܹ,௨,௧ଵ௧ାଵିఙ

௧ଵୀ௧∈்(௨) ≤ 1 ,ݑ∀    ݐ

           [3] 
Batchi,u,t is the batch volume of a task i in a production unit u at time t. In restriction 4 the size of 
Batchi,u,t is kept between a minimum and maximum volume Vu: 
 ܹ,௨,௧ ௨ܸ ≤ ℎ,௨,௧ܿݐܽܤ ≤ ܹ,௨,௧ ௨ܸ௫ ,ݑ∀  ݅ ∈ ܲ ௨ܶ,   ݐ
 
           [4] 
To guarantee feasibility of the production schedule, the following modification to constraint 3 is 
proposed: 
   ܹ,௨,௧ଵ௧ାଵିఙ

௧ଵୀ௧∈்(௨) +   ܹ,௨,௧ଵ௧ାଵିఛ
௧ଵୀ௧∈்(௨) ≤ 1 ,ݑ∀   ݐ

     [3*] 
Where the first term ensures that there can be only one production task on a unit u at time t for 
the period of ߪ; the second term ensures that there can be only one cleaning task on a unit u at 
time t for the period of ߬. Together this constraint ensures that only one task can be executed 
on a unit u at any given t. 
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Demand and storage capacity 
The total amount of a state available is limited by the storage capacity of state s, restriction 5 
gives this limitation, in which storagecapacitys is the minimum and maximum value that can be 
stored for each components at time interval t: 
௦ݕݐ݅ܿܽܽܿ݁݃ܽݎݐܵ  ≤ ௦,௧ݐ݊݁݊݉ܥ ≤ ௦௫ݕݐ݅ܿܽܽܿ݁݃ܽݎݐܵ ,ݏ∀    ݐ

           [5] 
In restriction 6 the sales (As,t) of state s, of all the products, are set to be higher or equal to the 
demand of s at time t. This ensures that the demand is always met: 
௦,௧ܣ  ≥ ௦,௧݀݊ܽ݉݁ܦ ,ݏ∀   ݐ
 
           [6] 
Restriction 7 limits the amount of state s available from a supplier at time t, the amount 
purchased has to be lower than this value at any time: 
௦,௧ܤ  ≤ ௦,௧ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܽܵ ,ݏ∀   ݐ
  
     [7] 
Reactor cleaning 
In polymer production processes it is important that a reactor does not contain a large amount 
of deposits on the vessel wall, as this influences the polymerization process. Therefore after a 
number of batches a reactor should be cleaned, which means it will be removed from 
production for a predefined time interval. In addition, reactors are cleaned when the following 
batch is a different product.  
 
The implementation of cleaning into the model introduces a new variable ߎ௨,௧ which counts the 
number of tasks executed on a unit. The restrictions used for modelling the reactor cleaning 
have to ensure that the following condtions are not transgressed: 
 

(a) ߎ௨,௧ should never exceed ݂; 
(b) ߎ௨,௧ has to be reset when ܹ,௨,௧ = 1; 
(c) ߎ௨,௧ has to be increased by one when ܹ,௨,௧ = 1  

The restrictions given above can be expressed mathematically with the logic inference 
constraints: 
 0	 ≤ ௨,௧ߎ	 ≤ ݂(1 − ܹ,௨,௧) ∀ݏ,  ݐ
       

    [8] 
 − ݂ ܹ,௨,௧ 	≤ ௨,௧ߎ	 − ௨,௧ିଵߎ −  ܹ,௨,௧∈்(௨) ≤ ܹ,௨,௧ ∀ݏ,  ݐ

    [9] 
Constraint 8 ensures that restriction (a) and  (b) are not transgressed, i.e.: when there are no 
cleaning tasks performed on a unit, the value for ܹ,௨,௧ = 0. This means that the number of 
batches performed ߎ௨,௧ cannot exceed the maximum number of batches allowed ( ݂).  
  
When a cleaning tasks is performed, ܹ,௨,௧ = 1, constraint 8 resets the variable ߎ௨,௧ to 0, as the 
constraint now reads as 0 ≤ ௨,௧ߎ ≤ 0. 
 
With constraint 9 the variable ߎ௨,௧ is increased by 1 whenever a production task is performed on 
unit u. This is done by subtracting the value of ߎ௨,௧ିଵ , which is the number at the previous time 
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interval t, and the binary value,	 ܹ,௨,௧, for a production task  from the variable ߎ௨,௧. When a 
production tasks is performed on unit u, the binary value, which describes the cleaning tasks, ܹ,௨,௧ = 0.  

4. Numerical example 
The resulting mathematical program is a linear mixed integer program (MILP). The model and 
modified assignment constraints are coded in AIMMS for two case studies with different solvers 
(Gurobi and CPLEX). For the first case a network of 6 reactors, two seed latex reactors of 30 m3 
and 4 product group reactors of 6 m3 are considered. In this configuration there is only one type 
of seed latex and 5 product groups can be created.  For the second case a network of 8 
reactors, with two seed latex reactors of 6 m3 and 6 product group reactors of 6 m3 is 
formulated.  In this configuration two types of seed latex are available and 10 different product 
groups can be produced. The interested reader can obtain the detailed data and parameters 
regarding production demand over time, storage capacities, cost factors, etc. from the authors. 
Depending on the time horizon for which a schedule is computed the problem size is different, 
for the larger case, over a time horizon of 4 weeks, the total number of variables is 56452 with 
in total 8064 binary decision variables.  
 

5. Computational results 

In figure 2 production schedules for the large case are shown. The upper chart is an infeasible 
production schedule that was created with the batch assignment constraint of Eq. 3. It can be 
noted that there is an overlap between production and cleaning tasks. For this reason an 
alternative assignment constraint was develeoped, as given in Eq. 3*. The below chart of figure 
2 shows that the production schedule now has become feasible. 

 
 

 
 
Figure 2: Effect of batch assignment constraint, above figure with Eq. 3 and below figure with 
Eq 3*. 

In table 1 the computational performance of the MILP model is evaluated. As can be seen table 
1, GUROBI performs better for both cases, in terms of CPU times. For the smaller case 
GUROBI is around 7 times faster, and for the larger case it is still 2 times faster. It is further 
noted however that the number of nodes GUROBI requires to reach near optimality is much 
larger, as compared to CPLEX. Also the objective function values are slightly lower for 
GUROBI. 
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Case Solver Nodes
[#] 

Objective value
[$] 

Gap
[%] 

CPU time
[Sec.] 

Small case CPLEX 12.4 5357 45302 0.41 830 
GUROBI 5.0 41650 45288 0.34 114 

Large case CPLEX 12.4 11445 61879 4.5 2399 
GUROBI 5.0 6361 60616 6.8 1238 

 
Table 1: Case and solver comparison 

Conclusions 

In this work an emulsion polymerization scheduling model was developed and tested that can 
be used to maximize profit of a facility while guaranteeing a requested demand for different 
products. Initially infeasible production schedules were produced, but after introducing modified) 
batch assignment constraints the model significantly improved. On average it was found that 
GUROBI 5.0 performs better than CPLEX 12.4 (around 5 times), however, it is noted that the 
demand profile influences the solver performance. 
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