

A publication of

ADDC

The Italian Association of Chemical Engineering Online at: www.aidic.it/cet

VOL. 32, 2013

Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright © 2013, AIDIC Servizi S.r.I., ISBN 978-88-95608-23-5; ISSN 1974-9791

DOI: 10.3303/CET1332101

# Pyrolysis of Thick Biomass Particles: Experimental and Kinetic Modelling

Guillaume Gauthier<sup>a</sup>, Thierry Melkior<sup>a</sup>, Sylvain Salvador<sup>b</sup>, Michele Corbetta<sup>c</sup>, Alessio Frassoldati<sup>c</sup>, Sauro Pierucci<sup>c</sup>, Eliseo Ranzi<sup>c</sup>, Hayat Bennadji<sup>d</sup>, Elizabeth M. Fisher<sup>d</sup>

<sup>a</sup>CEA – LITEN – Laboratory of Biomass Technologies, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France

The aim of this work is to analyze some new experimental data of pyrolysis of thick woody biomass particles with the help of a general and comprehensive mathematical model. This multiphase and multiscale problem involves strong interactions between chemical kinetics, both in the solid and in the gas phase, and heat/mass transfer phenomena.

Detailed experimental measurements have been obtained in an original lab scale reactor. This setup is designed to measure the products yielded along the pyrolysis of a single biomass (beech) particle as well as the temperature profiles into the sample. Experiments are carried out with pyrolysis temperatures ranging between 723 K and 1073 K. Lower-temperature pyrolysis data for poplar from a second reactor are also presented.

These results constitute a very useful data set to tune and validate a predictive multistep kinetic model of biomass pyrolysis (Ranzi et al. 2008) and to analyse and discuss the relative effect of different phenomena. The thermal behavior of the pyrolysis process is particularly highlighted.

# 1. Introduction

Environmental protection and fossil fuel depletion are some of the driving forces which push technological research towards the development of alternative fuels. Second generation biomass-to-biofuels is an interesting route, able to transform an abundant and well distributed feedstock into fuels with properties similar to conventional fossil fuels (Mendes and Figueiredo 2011). Moreover the lignocellulosic biomass is low in sulfur, resulting in a more ecological fuel (Catoire et al. 2008). Thermo-chemical conversion is one of the main approaches used to produce bio-oils, derived from the de-polymerization and fragmentation reactions of the three key biomass building blocks: cellulose, hemicelluloses and lignin. The selectivity of the process towards gas and liquid products is strongly affected by the thermal treatment used. In addition, for greater economic viability, it is suggested to use thick biomass particles as the feedstock, reducing grinding costs. This nevertheless increases the modeling complexity, due to mass and heat transfer limitations (Park et al. 2010).

Thermal gradients into the sample during pyrolysis are of negligible importance when studying the combustion or gasification of a thin particle. In the thermally thin regime, the characterization of biomass, the description of the release of the species, and their chemical evolution in the gas phase were studied and verified relating to thermal degradation of different biomass in a previous paper (Ranzi et al. 2008). The current work carefully analyses the thermal features of the pyrolysis of thick biomass particles.

Recent literature reports interesting pyrolysis experiments which show some unusual thermal behaviors (Park et al. 2010) and (Bennadji et al. 2013). Temperature profiles within the core of biomass particles, subjected to pyrolysis, exhibit a thermal sink, followed by a sharp peak, which overtakes the surface

<sup>&</sup>lt;sup>b</sup>Centre RAPSODEE, UMR 5302 CNRS, Mines-Albi, Route de Teillet, 81013 Albi CT Cedex 09, Albi, France

<sup>&</sup>lt;sup>c</sup>Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20131 Milano, Italy

<sup>&</sup>lt;sup>d</sup>Sibley School of Mechanical and Aerospace Engineering, Upson Hall, Cornell University, Ithaca, NY 14853, USA guillaume.gauthier@cea.fr

thermal profile. The experimental fact could be explained on the basis of the process kinetics, which is described by both endothermic and exothermic reactions. A first endothermic stage corresponds to a primary release of volatile species, and a second exothermic period mainly corresponds to the successive transformations of the solid residue to final char.

New experiments are presented, and the previous (Ranzi et al. 2008) multistep kinetic model of biomass pyrolysis is further extended and validated in this work. The influence of exothermic and endothermic phenomena on temperature profiles inside the sample is discussed.

### 2. Experimental

#### 2.1 Samples

Each experiment is carried out with a single beech wood particle, which is a cylinder, 20mm in diameter and 30mm in height. Sample dimensions are representative of typical centimetre-scale woodchip (NF EN 14961-1). The grain direction is parallel to the cylinder axis. All samples originate from the same trunk in order to limit the dispersion of the results due to feedstock variability. Samples are first dried in an oven at 378 K during 12h following the procedure NF EN 14774, and subsequently stored in a desiccator.

The wood elemental composition is found to be 48.70% in carbon, 6.04% in hydrogen and 44.46% in oxygen. Oxygen content is obtained by subtraction knowing that ash content is 0.80% at 823°C. The proximate analysis results from FCBA Grenoble Laboratory are: cellulose  $41\% \pm 1\%$ , hemicelluloses  $30\% \pm 2\%$  and lignin  $25 \pm 2\%$ .

#### 2.2 Experimental device

The experimental device is depicted in Figure 1.

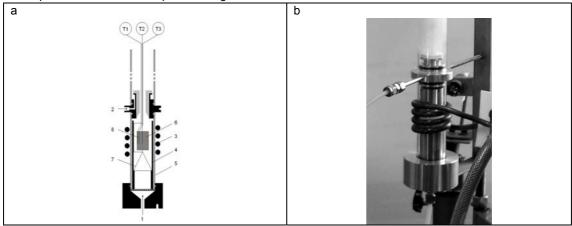



Figure 1: a: Experimental device 1: Nitrogen inlet (2 NL.min<sup>-1</sup>); 2: Nitrogen inlet (from 1 to 3 NL.min<sup>-1</sup>); 3: Inductor; 4: Inconel pipe heated by induction; 5: Quartz pipe; 6: Wood sample; 7: sample holder; 8: thermocouples. b: Photograph of the experimental device.

This equipment has been developed to study the pyrolysis of a single centimetre-scale sample. A 12kW induction furnace heats an Inconel pipe with a four-coil inductor. The temperature of the Inconel pipe can not exceed 1573 K. The temperature at the surface of the Inconel pipe is measured and controlled with a two-color pyrometer (IMPAC infratherm). The power of the inductor is controlled, with a GEFRAN 2500 regulator, to maintain the temperature of the Inconel pipe at the chosen value.

With this equipment, the heating rate of the Inconel pipe can reach 773 K.s<sup>-1</sup>. Pyrolysis temperatures lie between 723 K and 1073 K.

The Inconel pipe is swept by nitrogen (2NL.min<sup>-1</sup>) to carry away the vapors produced during pyrolysis. Above the Inconel pipe, this flow is mixed with nitrogen at ambient temperature (1 to 3 NL.min<sup>-1</sup>) to cool down the volatile matter and condense a first fraction of organic vapors. Thermocouples (K type, 0.5-mm-ID) are imbedded in wood sample to record the internal temperature at different radii (on the centre and at 5 mm and 8 mm from the particle axis), all at an axial position 2 cm below the top of the particle.

A second set of experiments were performed with cylindrical poplar samples of similar dimensions (D=1.9 and 2.54 cm; L=4 cm) in a heated turbulent nitrogen flow. The 1.9-cm data was presented, and the apparatus was described, by (Bennadji et al. 2013). These experiments used gas temperatures below 700 K, conditions with relevance to biochar production conditions for soil amendment. Sheathed 0.25-mm thermocouples were situated on the centreline, at an axial position of 1 cm from the end of the particle.

# 3. Biomass characterization, physical and multistep kinetic models of biomass pyrolysis

The modeling approach is described and an extended version of (Ranzi et al. 2008) multistep kinetic model is presented.

#### 3.1 Biomass characterization

Biomass is characterized in terms of the three major components: cellulose, hemicelluloses, and lignin, together with inert ashes and moisture. Lignin is approximated by a mixture of reference components due to its complex chemical structure. They are identified by LIG-C, LIG-H and LIG-O which reflect their characteristic of being richer in carbon, hydrogen and oxygen respectively.

In previous work (Ranzi et al. 2008), we proposed a method to characterize the biomass feedstock on the basis of its elemental composition and its general cellulose/hemicelluloses/lignin composition. Table 1 shows the results of this procedure applied to the biomass described in the experimental part.

Table 1: Biomass characterization in terms of reference components

| Reference component | Atomic composition                             | Weight fraction (daf basis) |  |
|---------------------|------------------------------------------------|-----------------------------|--|
| Cellulose           | C <sub>6</sub> H <sub>10</sub> O <sub>5</sub>  | 0.420                       |  |
| Hemicelluloses      | $C_5H_8O_4$                                    | 0.315                       |  |
| LIGC                | C <sub>15</sub> H <sub>14</sub> O <sub>4</sub> | 0.130                       |  |
| LIGH                | $C_{22}H_{28}O_9$                              | 0.016                       |  |
| LIGO                | $C_{20}H_{22}O_{10}$                           | 0.119                       |  |

# 3.2 Thick particles and balance equation at the particle scale, physical model

At the particle scale, thermally thick particles exhibit significant internal temperature and mass gradients. The Biot number, defined as in equation (1), is a useful ratio to evaluate the extent of the temperature gradients. Large external heating rates and low thermal conductivity of thick particles create a Biot number >1 and temperature gradients inside the particle:

$$Bi = \frac{h.d_p}{k} \tag{1}$$

where h is the external heat-transfer coefficient, k is the thermal conductivity, and  $d_p$  is the equivalent diameter of the solid particle.

The equivalent spherical diameter of the particles:

$$d_p = \frac{6N_p}{S_p} \tag{2}$$

with V<sub>p</sub> and S<sub>p</sub> being the particle volume and surface, respectively.

Simulation results are obtained using in-house software. One-dimensional spherical coordinates are used to describe the gradients inside isotropic particles. Gradients of temperature, solid fuel composition, and gas concentrations both inside and outside the particle are predicted by the model, provided that the proper balance equations and boundary conditions are established.

# 3.3 Multistep kinetic model of biomass pyrolysis

The multistep kinetic model presented in this paper is a further extension of the previous one (Ranzi et al. 2008). The multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin - and gives detailed information on yields composition of gas, tar, and solid residue. Successive gas phase reactions of the released volatile species are then described by a general kinetic scheme of pyrolysis.

(Blondeau and Jeanmart 2012) have recently used the previous version and shown some discrepancies between simulated and experimental data. They studied the pyrolysis of cylindrical beech wood particles ranging from 100  $\mu$ m to 2 mm in industrial boiler conditions. They suggested some modifications to the (Ranzi et al. 2008) pyrolysis mechanism in order to better predict the gas and tar species emissions, by a compared analysis of two pyrolysis mechanisms.

Table 2 gives the full details of a new version of the multistep kinetic model, including the heats of reaction. As far as the mechanism of cellulose is concerned, the heats of reaction agree well with the ones

estimated by (Milosavljevic et al. 1996). The char formation is an exothermic reaction releasing  $\sim$ 2000 kJ/kg of char formed, while the tar release is endothermic, absorbing  $\sim$ 500 kJ/kg of volatiles produced. The extended version is validated by comparison between simulated and experimental temperature profiles inside a biomass sample. Three experimental data sets are used for the validation: from the devices described in the experimental part and from (Park et al. 2010) studies. Results of comparison are presented on Figures 3, 4.a and 5.a. Simulated profiles agree satisfactorily with experimental ones.

Table 2: Multistep kinetic scheme of biomass pyrolysis.

| S-1   Reaction   RelAigh   Resource   RelAigh   RelAigh   Resource   RelAigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reaction                                                                                                                                 | Kinetic constant*                     | Heat of                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          | [s <sup>-1</sup> ]                    |                        |
| $\begin{array}{c} \text{CELLA} \rightarrow \text{HAA} + 0.2 \; \text{Glyoxal} + \; 0.2 \; \text{C}_2\text{H}_4\text{O} + 0.25 \; \text{IMFU} + \\ 0.2 \; \text{C}_2\text{H}_5\text{O} + 0.22 \; \text{CO}_2 + 0.16 \; \text{CO} + 0.1 \; \text{CH}_4 + 0.01 \; \text{G}[\text{H}_2] + 0.83 \; \text{H}_2\text{O} + 1 \times 10^9 \; \text{exp} \; (-30000/\text{RT}) \\ 0.01 \; \text{HCOOD} + & 0.61 \; \text{Char} \\ \hline \text{CELLA} \rightarrow \text{LVG} & 4 \times \text{T} \; \text{exp} \; (-310000/\text{RT}) & 490 \\ \hline \text{CELL} \rightarrow 5 \; \text{H}_2\text{O} + 6 \; \text{Char} & 8 \times 10^7 \; \text{exp} \; (-310000/\text{RT}) & 1800 \\ \hline \text{HCE} \rightarrow 0.4 \; \text{HCE} + 1.6 \; \text{HCE} & 1 \times 10^{75} \; \text{CO}_2 + 0.025 \; \text{HCOOD} + \\ \hline \text{CEI} \rightarrow 1.025 \; \text{G}[\text{H}_2] + 0.025 \; \text{H}_2\text{O} + 1.075 \; \text{CO}_2 + 0.025 \; \text{HCOOD} + \\ \hline \text{CEI} \rightarrow 0.3 \; \text{CH}_2\text{O} + 0.125 \; \text{C}_2\text{H}_5\text{OH} + 0.25 \; \text{G}(\text{CH}_3\text{OH}) + 0.625 \; \text{CH}_4 + 3 \times 10^9 \; \text{exp} \; (-32000/\text{RT}) \\ \hline 0.25 \; \text{C}_2\text{H}_4 + 0.875 \; \text{Char} \\ \hline \text{CEI} \rightarrow 0.4 \; \text{G}[\text{H}_2] + 0.25 \; \text{H}_2\text{O} + 0.75 \; \text{CO}_2 + 0.05 \; \text{HCOOH} + \\ \hline 0.7 \; \text{CO} + 0.15 \; \text{G}(\text{CO}) + 1.3 \; \text{G}(\text{COH}_2) + 0.625 \; \text{G}(\text{CH}_4) + \\ \hline 0.375 \; \text{G}(\text{C}_2\text{H}_4) + 0.675 \; \text{Char} \\ \hline \text{HCEI} \rightarrow \text{S}(\text{VA}) + 0.675 \; \text{Char} \\ \hline \text{HCE2} \rightarrow 0.2 \; \text{H}_2\text{O} + 0.425 \; \text{CO}_2 + 0.55 \; \text{G}(\text{CH}_4) + 0.275 \; \text{G}(\text{C}_2\text{H}_4) + \\ \hline \text{C}_2 \rightarrow \text{CO}_2 \; \text{H}_2\text{O} + 0.425 \; \text{CO}_2 + 0.55 \; \text{G}(\text{CH}_4) + 0.55 \; \text{G}(\text{CO}_2) + 1 \times 10^{10} \; \text{exp} \; (-33000/\text{RT}) \\ \hline 0.2 \; \text{CO} + \; \text{G}(\text{COH}_2) + 0.325 \; \text{G}(\text{H}_2) + \text{Char} \\ \hline \text{LIG-} \rightarrow \; \text{O}.35 \; \text{LIGCC} + \; 0.1 \; \text{COMMARYL} + 0.08 \; \text{PHENOL} + 4 \times 10^{15} \; \text{exp} \; (-48500/\text{RT}) \\ \hline 0.41 \; \text{C}_2\text{H}_3 + \text{H}_2\text{O} + \text{G}(\text{COH}_2) + 0.495 \; \text{CH}_4 + 0.32 \; \text{CO} + 5.735 \; \text{Char} \\ \hline \text{LIGO} \rightarrow \; \text{LIGOH} + \text{CO}_2 & 1 \times 10^9 \; \text{exp} \; (-33000/\text{RT}) \\ \hline 0.45 \; \text{G}(\text{CH}_3) + 0.65 \; \text{G}(\text{CH}_3) + 0.495 \; \text{CH}_4 + 0.32 \; \text{CO} + 5.735 \; \text{Char} \\ \hline \text{LIGO} \rightarrow \; \text{LIGOH} + \text{CO}_2 & 1 \times 10^9 \; \text{exp} \; (-3500/\text{RT}) \\ \hline 0.45 \; \text{G}(\text{CH}_3) + 0.65 \; \text{G}(\text{CH}_3) + 0.495 \; \text{CH}_4 + 0.35 \; \text{CH}_3 + 0.7 \; \text{H}_2\text{O} + 0.5 \; \text{CH}_3 + 0.7 \; \text{H}_2\text{O} + 0.5 \; \text{CH}_3 + 0.7 \; \text{H}_2\text{O} + 0.5 \; \text{CH}_3 + 0.7 \; \text{H}_2\text{O} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                       | [kJ.kg <sup>-1</sup> ] |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CELL → CELLA                                                                                                                             | 8×10 <sup>13</sup> exp (-45000/RT)    | 0                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                       | 650                    |
| $\begin{array}{c} \text{CELLA} \rightarrow \text{LVG} & 4\times \text{T} \exp(-10000/\text{RT}) & 490 \\ \text{CELL} \rightarrow 5 \text{ H}_2\text{O} + 6 \text{ Char} & 8\times 10^7 \exp(-31000/\text{RT}) & -1800 \\ \text{HCE} \rightarrow 0.4 \text{ HCE} 1 + 0.6 \text{ HCE}2 & 1\times 10^{10} \exp(-31000/\text{RT}) & 100 \\ \text{HCE} \rightarrow 1.025 & \text{G(H}_2\} + 0.025 \text{ H}_2\text{O} + 1.075 & \text{CO}_2 + 0.025 \text{ HCOOH} + \\ 1.25 & \text{G(H}_2\} + 0.125 & \text{C}_2\text{H}_5\text{OH} + 0.25 & \text{G(C}_3\text{OH}_3\text{OH}_3 + 0.625 & \text{CH}_4 + 3\times 10^9 \exp(-32000/\text{RT})} \\ 0.25 & \text{C}_2\text{H}_4 + 0.875 & \text{Char} \\ \text{HCE} 1 \rightarrow 0.4 & \text{G(H}_2\} + 0.25 & \text{H}_2\text{O} + 0.75 & \text{CO}_2 + 0.05 & \text{HCOOH} + \\ 0.7 & \text{CO} & + 0.15 & \text{G(CO}_3 + 1.3 & \text{G(COH}_2) + 0.625 & \text{G(H}_4) + 0.15\times \text{T} \exp(-8000/\text{RT})} \\ 0.375 & \text{G(C}_2\text{H}_4) + 0.675 & \text{Char} \\ \text{HCE} 1 \rightarrow \text{OX} & \text{HO}_3 + 0.675 & \text{Char} \\ \text{HCE} 1 \rightarrow \text{OX} & \text{HO}_3 + 0.075 & \text{CO}_2 + 0.55 & \text{G(CH}_4) + 0.275 & \text{G(C}_3\text{H}_4) + \\ \text{O.7} & \text{CO} & + 0.15 & \text{G(CO}_3 + 1.3 & \text{G(COH}_2) + 0.625 & \text{G(C}_3\text{H}_4) + \\ 0.375 & \text{G(C)}_2\text{H}_4) + 0.075 & \text{CO}_2\text{H}_3 + 0.675 & \text{Char} \\ \text{HCE} 2 \rightarrow \text{O.2} & \text{H}_2\text{O} + 0.425 & \text{CO}_2 + 0.55 & \text{G(CH}_4) + 0.275 & \text{G(C}_3\text{H}_4) + \\ \text{O.2} & \text{CO} + \text{O.15} & \text{C}_2\text{H}_3\text{OH} + 0.2 & \text{HAA} + 0.025 & \text{HCOOH} + 0.55 & \text{G(CO}_2\text{H}_4) + \\ \text{O.2} & \text{CO} + \text{G(COH}_2\text{H}_2\text{OH}_3 + 0.325 & \text{G(H}_2\text{H}_2\text{OH}_3 + 0.325 & \text{G(CH}_3\text{H}_2\text{OH}_3 + 0.325 & \text{G(CH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3\text{OH}_3O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •                                                                                                                                      | 1×10 <sup>9</sup> exp (-30000/RT)     |                        |
| $\begin{array}{c} \text{CELL} \rightarrow 5 \text{ H}_2\text{O} + 6 \text{ Char} & 8 \times 10^7 \text{ exp} (\cdot 31000/\text{RT}) & -1800 \\ \text{HCE} \rightarrow 0.4 \text{ HCE1} + 0.6 \text{ HCE2} & 1 \times 10^{10} \text{ exp} (\cdot 31000/\text{RT}) & 100 \\ \text{HCE1} \rightarrow 1.025 \text{ G}\{\text{H}_2\} + 0.025 \text{ H}_2\text{O} + 1.075 \text{ CO}_2 + 0.025 \text{ HCOOH} + \\ 1.1 \text{ CO} + 0.3 \text{ CH}_2\text{O} + 0.125 \text{ C}_2\text{H}_3\text{OH} + 0.25 \text{ G}\{\text{CH}_3\text{OH}\} + 0.625 \text{ CH}_4 + 3 \times 10^9 \text{ exp} (\cdot 32000/\text{RT}) \\ 0.25 \text{ C}_2\text{H}_4 + 0.875 \text{ Char} \\ \text{HCE1} \rightarrow 0.4 \text{ G}\{\text{H}_2\} + 0.25 \text{ H}_2\text{O} + 0.75 \text{ CO}_2 + 0.05 \text{ HCOOH} + \\ 0.7 \text{ CO} + 0.15 \text{ G}\{\text{CO}\} + 1.3 \text{ G}\{\text{COH}_2\} + 0.625\text{G}\{\text{CH}_4\} + 0.15 \times \text{T exp} (\cdot 8000/\text{RT}) \\ 0.375\text{G}\{\text{C}_2\text{H}_4\} + 0.675 \text{ Char} \\ \text{HCE1} \rightarrow \text{XYLAN} & 3 \times \text{T exp} (-11000/\text{RT}) & 590 \\ \text{HCE2} \rightarrow 0.2 \text{ H}_2\text{O} + 0.425 \text{ CO}_2 + 0.55 \text{ G}\{\text{CH}_4\} + 0.275 \text{ G}\{\text{C}_2\text{H}_4\} + \\ 0.12 \text{ C}_3\text{ C}_3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                       |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                       | 490                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                       | -1800                  |
| $\begin{array}{c} 1.1  \text{CO} + 0.3  \text{CH}_2\text{O} + 0.125  \text{C}_2\text{H}_5\text{OH} + 0.25  \text{G}(\text{CH}_3\text{OH}) + 0.625  \text{CH}_4 + 3 \times 10^9  \text{exp}  (-32000/\text{RT}) \\ 0.25  \text{C}_2\text{H}_4 + 0.875  \text{Char} \\ 1.0  \text{O.4}  \text{G}(\text{H}_2) + 0.25  \text{H}_2\text{O} + 0.75  \text{CO}_2 + 0.05  \text{HCOOH} + \\ 0.7  \text{CO} + 0.15  \text{G}(\text{CO}) + 1.3  \text{G}(\text{COH}_2) + 0.625  \text{G}(\text{CH}_4) + 0.15 \times \text{T}  \text{exp}  (-8000/\text{RT}) \\ 0.375  \text{G}(\text{C}_2\text{H}_4) + 0.675  \text{Char} \\ 1.0  \text{CEI} \rightarrow \text{XYLAN} & 3 \times \text{T}  \text{exp}  (-11000/\text{RT}) & 590 \\ 1.0  \text{CE2} \rightarrow 0.2  \text{H}_2\text{O} + 0.425  \text{CO}_2 + 0.55  \text{G}(\text{CH}_4) + 0.275  \text{G}(\text{C}_2\text{H}_4) + \\ 0.1  \text{CH}_2\text{O} + 0.1  \text{C}_2\text{H}_5\text{OH} + 0.2  \text{HAA}} + 0.025  \text{HCOOH} + 0.55  \text{G}(\text{CO}_2) + 1 \times 10^{10}  \text{exp}  (-33000/\text{RT}) \\ 0.2  \text{CO} +  \text{G}(\text{COH}_2) + 0.325  \text{G}(\text{H}_2) + \text{Char} \\ 1.0  \text{CO} +  \text{G}(\text{COH}_2) + 0.325  \text{G}(\text{H}_2) + \text{Char} \\ 1.0  \text{CO} +  \text{G}(\text{COH}_2) + 0.325  \text{G}(\text{H}_2) + 0.08  \text{PHENOL} + 4 \times 10^{15}  \text{exp}  (-33000/\text{RT}) \\ 0.2  \text{CO} +  \text{G}(\text{COH}_2) + 0.495  \text{CH}_4 + 0.32  \text{CO} + 5.735  \text{Char} \\ 1.0  \text{GO} \rightarrow \text{LIGOH} + \text{C}_3  \text{H}_60 & 2 \times 10^{13}  \text{exp}  (-37500/\text{RT}) & 130 \\ 1.0  \text{GO} \rightarrow \text{LIGOH} + \text{C}_3  \text{H}_60 & 2 \times 10^{13}  \text{exp}  (-37500/\text{RT}) & 130 \\ 1.0  \text{GO} \rightarrow \text{LIGOH} + \text{C}_3  \text{H}_60 & 2 \times 10^{13}  \text{exp}  (-37500/\text{RT}) & 130 \\ 1.0  \text{GO} \rightarrow \text{LIGOH} + \text{C}_3  \text{H}_60 & 2 \times 10^{13}  \text{exp}  (-37500/\text{RT}) & 130 \\ 1.0  \text{GO} \rightarrow \text{CO} \rightarrow \text{C}_3  \text{COUMMARYL} + 0.2  \text{PHENOL} + 0.35  \text{HAA} + 0.7  \text{H}_20 + \\ 0.5  \text{G}(\text{CH}_4) + 0.6  \text{G}(\text{C}_2\text{H}_4) + \text{G}(\text{COH}_2) + 0.4  \text{G}(\text{CO}) + 0.4  \text{CO} + 5 \times 10^6  \text{exp}  (-31500/\text{RT}) & 450 \\ 0.5  \text{G}(\text{CH}_4) + 0.05  \text{CO}_2 + 0.3  \text{CO} +  \text{G}(\text{CO}) + 0.5  \text{CH}_30\text{H} + \\ 0.5  \text{G}(\text{CH}_3) + 0.5  \text{G}(\text{C}_4) + 0.2  \text{G}(\text{CO}_4) + 0.5  \text{CH}_30\text{H} + \\ 0.5  \text{G}(\text{CO}_4) + 0.45  \text{G}(\text{CH}_4) + 0.2  \text{G}(\text{CO}_4) + 0.45  \text{G}(\text{CO}_4) + \\ 0.4  \text{G}(\text{CO}_4) + 0.45  \text{G}(\text{CH}_4) + 0.7  \text{C}_2\text{H}_4 + 10.15  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $HCE \rightarrow 0.4 \ HCE1 + 0.6 \ HCE2$                                                                                                | 1×10 <sup>10</sup> exp (-31000/RT)    | 100                    |
| $\begin{array}{c} 0.25 \ C_2H_4 + 0.875 \ Char \\ HCE1 \rightarrow 0.4 \ G\{H_2\} + 0.25 \ H_2O + 0.75 \ CO_2 + 0.05 \ HCOOH + \\ 0.7 \ CO + 0.15 \ G\{CO\} + 1.3 \ G\{COH_2\} + 0.625G\{CH_4\} + 0.15\times T \ exp (-8000/RT) \\ 0.375G\{C_2H_4\} + 0.675 \ Char \\ HCE1 \rightarrow XYLAN                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          | •                                     | 22                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1 CO + 0.3 CH <sub>2</sub> O + 0.125 C <sub>2</sub> H <sub>5</sub> OH + 0.25 G{CH <sub>3</sub> OH} + 0.625 CH <sub>4</sub> +           | 3×10 <sup>9</sup> exp (-32000/RT)     |                        |
| $\begin{array}{c} 0.7 \ \ \text{CO} \ + \ 0.15 \ \ \text{G\{CO\}} \ + \ 1.3 \ \ \ \text{G\{COH_2\}} \ + \ 0.625 \ \ \text{G\{CH_4\}} \ + \ 0.15 \times T \ \ \text{exp} \ (-8000/RT) \\ \hline 0.375 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                       |                        |
| $\begin{array}{c} 0.375G\{C_2H_4\} + 0.675  \text{Char} \\ \hline HCE1 \to XYLAN \\ \hline HCE2 \to 0.2  H_2O + 0.425  CO_2 + 0.55  G\{CH_4\} + 0.275  G\{C_2H_4\} + \\ \hline 0.1  CH_2O + 0.1  C_2H_5OH + 0.2  HAA + 0.025  HCOOH + 0.55  G\{CO_2\} + 1 \times 10^{10}  \exp{(-33000/RT)} \\ \hline 0.2  CO + G\{COH_2\} + 0.325G\{H_2\} + Char \\ \hline LIG-C \to 0.35  LIGCC + 0.1  COUMARYL + 0.08  PHENOL + 4 \times 10^{15}  \exp{(-48500/RT)} \\ \hline 0.41  C_2H_4 + H_2O + G\{COH_2\} + 0.495  CH_4 + 0.32  CO + 5.735  Char \\ \hline LIG-H \to LIGOH + C_3H_6O \\ \hline LIG-O \to LIGOH + C_0 + 0.35  COMMARYL + 0.2  PHENOL + 0.35  HAA + 0.7  H_2O + 0.450 \\ \hline 0.65  G\{CH_4\} + 0.6  G\{C_2H_4\} + G\{COH_2\} + 0.4  G\{CO\} + 0.4  CO + 5 \times 10^6  \exp{(-31500/RT)} \\ \hline 0.75  Char \\ \hline LIGOH \to LIG + 0.15  G\{H_2\} + 0.9  H_2O + 0.5  CH_3OH + 0.5  CH_3OH + 0.5  G\{COH_2\} + 0.45  G\{CH_4\} + 0.2  G\{C_2H_4\} + 4.15  Char \\ \hline LIGOH \to 1.3  G\{H_2\} + 1.5  H_2O + 0.5  CO_2 + 1.6  G\{CO\} + 1 \\ \hline 0.4  G\{COH_2\} + 1.456C(CH_4\} + 0.7  C_2H_4 + 10.15  Char \\ \hline LIGOH \to 1.3  G\{H_2\} + 1.5  H_2O + 0.5  CO_2 + 1.6  G\{CO\} + 1 \\ \hline 0.4  G\{COH_2\} + 1.456C(CH_4\} + 0.7  C_2H_4 + 10.15  Char \\ \hline LIG \to FE2MACR & 8 \times T  \exp(-12000/RT) \\ \hline 0.4  G\{COH_2\} + 5.5  G\{COH_2\} + 5.5  Char \\ \hline LIG \to G\{COH_2\} + 5.5  G\{COH_2\} + 5.5  Char \\ \hline LIG \to G\{COH_2\} + 5.5  G\{COH_2\} + 5.6  Char \\ \hline G\{CO\} \to CO & 5 \times 10^{11}  \exp(-5000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11}  \exp(-71000/RT) & -1500 \\ \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $HCE1 \rightarrow 0.4 G\{H_2\} + 0.25 H_2O + 0.75 CO_2 + 0.05 HCOOH +$                                                                   | · · · · · · · · · · · · · · · · · · · | -1400                  |
| $ \begin{array}{l} \text{HCE1} \rightarrow \text{XYLAN} & 3\times \text{T exp (-11000/RT)} & 590 \\ \text{HCE2} \rightarrow 0.2 \text{ H}_2\text{O} + 0.425 \text{ CO}_2 + 0.55 \text{ G}(\text{CH}_4) + 0.275 \text{ G}(\text{C}_2\text{H}_4) + 0.330} \\ 0.1 \text{ CH}_2\text{O} + 0.1 \text{ C}_2\text{H}_6\text{OH} + 0.2 \text{ HAA} + 0.025 \text{ HCOOH} + 0.55 \text{ G}(\text{CO}_2) + 1\times 10^{10} \text{ exp (-33000/RT)} \\ 0.2 \text{ CO} + \text{ G}(\text{COH}_2) + 0.325\text{ G}(\text{H}_2) + \text{ Char} \\ \text{LIG-C} \rightarrow 0.35 \text{ LIGCC} + 0.1 \text{ COUMARYL} + 0.08 \text{ PHENOL} + 4\times 10^{15} \text{ exp(-48500/RT)} & -100 \\ 0.41 \text{ C}_2\text{H}_4 + \text{H}_2\text{O} + \text{G}(\text{COH}_2) + 0.495 \text{ CH}_4 + 0.32 \text{ CO} + 5.735 \text{ Char}} \\ \text{LIG-H} \rightarrow \text{LIGOH} + \text{C}_3\text{H}_6\text{O} & 2\times 10^{13} \text{ exp(-37500/RT)} & 130 \\ \text{LIG-O} \rightarrow \text{LIGOH} + \text{CO}_2 & 1\times 10^9 \text{ exp(-25500/RT)} & 260 \\ \text{LIGCC} \rightarrow 0.3 \text{ COUMARYL} + 0.2 \text{ PHENOL} + 0.35 \text{ HAA} + 0.7 \text{ H}_2\text{O} + & -450 \\ 0.65 \text{ G}(\text{CH}_4) + 0.6 \text{ G}(\text{C}_2\text{H}_4) + \text{ G}(\text{COH}_2) + 0.4 \text{ G}(\text{CO}) + 0.4 \text{ CO} + 5\times 10^6 \text{ exp(-31500/RT)}} \\ 0.5 \text{ G}(\text{CH}_3\text{OH}) + 0.05 \text{ CO}_2 + 0.3 \text{ CO} + \text{G}(\text{CO}) + 0.05 \text{ CH}_3\text{OH} + 3\times 10^8 \text{ exp(-30000/RT)}} \\ 0.6 \text{ G}(\text{COH}_2) + 0.45 \text{ G}(\text{CH}_4) + 0.2 \text{ G}(\text{C}_2\text{H}_4) + 4.15 \text{ Char}} \\ \text{LIGOH} \rightarrow 1.3 \text{ G}(\text{H}_2) + 1.5 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + 1.6 \text{ G}(\text{CO}) + \\ 0.45 \text{ G}(\text{COH}_2) + 1.45 \text{ G}(\text{CH}_4) + 0.7 \text{ C}_2\text{H}_4 + 10.15 \text{ Char}} \\ \text{LIG} \rightarrow \text{FE2MACR} & 8\times \text{T exp(-12000/RT)} \\ \text{LIG} \rightarrow \text{FE2MACR} & 8\times \text{T exp(-12000/RT)} \\ \text{LIG} \rightarrow \text{FE2MACR} & 8\times \text{T exp(-12000/RT)} \\ \text{LIG} \rightarrow \text{G}(\text{COH}_4) + 0.65 \text{ G}(\text{C}_2\text{H}_4) + 0.05 \text{ HCOOH} + 1.2\times 10^9 \text{ exp(-30000/RT)} \\ 0.45 \text{ G}(\text{CO}) + 0.5 \text{ G}(\text{COH}_2) + 5.5 \text{ Char} \\ \text{LIG} \rightarrow \text{G}(\text{COH}_4) + 0.5 \text{ G}(\text{C}_2\text{H}_4) + 0.4 \text{ G}(\text{H}_2) + 0.6 \text{ H}_2\text{O} + 0.4 \text{ CO} + \\ 0.25\times\text{T}\times\text{exp(-8000/RT)} \\ 0.45 \text{ G}(\text{CO}) + 2 \text{ G}(\text{COH}_2) + 6 \text{ Char} \\ \text{G}(\text{CO}_2) \rightarrow \text{CO}_2 & 6\times 10^{5} \text{ exp(-24000/RT)} & -1500 \\ \text{G}(\text{CO}_2) \rightarrow \text{CO}_2 & 6\times 10^{5} \text{ exp(-24000/RT)} & -1500 \\ \text{G}(\text{CO}_2) \rightarrow \text{CO}_2 & 6\times 10^{5} \text{ exp(-27000/RT)} & -1500 \\ \text{G}(\text{COH}_2) \rightarrow \text{CO}_2 & 5\times 10^{11} \text{ exp(-71000/RT)} & -1500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                          | 0.15×T exp (-8000/RT)                 |                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                       |                        |
| $\begin{array}{c} 0.1 \text{ CH}_2\text{O} + 0.1 \text{ C}_2\text{H}_5\text{OH} + 0.2 \text{ HAA} + 0.025 \text{ HCOOH} + 0.55 \text{ G}\{\text{CO}_2\} + 1\times10^{10} \text{ exp } (-33000/\text{RT}) \\ 0.2 \text{ CO} + \text{ G}\{\text{COH}_2\} + 0.325\text{ G}\{\text{H}_2\} + \text{ Char} \\ \text{LIG-C} &\rightarrow 0.35 \text{ LIGCC} + 0.1 \text{ COUMARYL} + 0.08 \text{ PHENOL} + 4\times10^{15} \text{ exp}(-48500/\text{RT}) & -100 \\ 0.41 \text{ C}_2\text{H}_4 + \text{H}_2\text{O} + \text{ G}\{\text{COH}_2\} + 0.495 \text{ CH}_4 + 0.32 \text{ CO} + 5.735 \text{ Char} \\ \text{LIG-H} &\rightarrow \text{LIGOH} + \text{C}_3\text{H}_6\text{O} & 2\times10^{13} \text{ exp}(-37500/\text{RT}) & 130 \\ \text{LIG-O} &\rightarrow \text{LIGOH} + \text{CO}_2 & 1\times10^9 \text{ exp}(-25500/\text{RT}) & 260 \\ \text{LIGCC} &\rightarrow 0.3 \text{ COUMARYL} + 0.2 \text{ PHENOL} + 0.35 \text{ HAA} + 0.7 \text{ H}_2\text{O} + \\ 0.65 \text{ G}\{\text{CH}_4\} + 0.6 \text{ G}\{\text{C}_2\text{H}_4\} + \text{ G}\{\text{COH}_2\} + 0.4 \text{ G}\{\text{CO}\} + 0.4 \text{ CO} + 5\times10^6 \text{ exp}(-31500/\text{RT}) \\ 0.65 \text{ G}\{\text{CH}_4\} + 0.15 \text{ G}\{\text{H}_2\} + 0.9 \text{ H}_2\text{O} + 0.5 \text{ CH}_3\text{OH} + \\ 0.5 \text{ G}\{\text{CH}_3\text{OH}\} + 0.05 \text{ CO}_2 + 0.3 \text{ CO} + \text{ G}\{\text{CO}\} + 0.05 \text{ HCOOH} + 3\times10^6 \text{ exp}(-30000/\text{RT}) \\ 0.6 \text{ G}\{\text{COH}_2\} + 0.45 \text{ G}\{\text{CH}_4\} + 0.2 \text{ G}\{\text{C}_2\text{H}_4\} + 4.15 \text{ Char} \\ \text{LIGOH} &\rightarrow 1.3 \text{ G}\{\text{H}_2\} + 1.5 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + 1.6 \text{ G}\{\text{CO}\} + \\ 1.4 \text{ 10}^2 \text{ exp}(-15000/\text{RT}) \\ 3.9 \text{ G}\{\text{COH}_2\} + 1.45 \text{ G}\{\text{CH}_4\} + 0.7 \text{ C}_2\text{H}_4 + 10.15 \text{ Char} \\ \text{LIG} &\rightarrow \text{FE2MACR} & 8\times\text{T exp}(-12000/\text{RT}) \\ \text{LIG} &\rightarrow \text{FE2MACR} & 8\times\text{T exp}(-12000/\text{RT}) \\ \text{LIG} &\rightarrow \text{D.95} \text{ H}_2\text{O} + 0.2 \text{ CH}_2\text{O} + 0.2 \text{ C}_2\text{H}_4\text{O} + 0.4 \text{ CH}_3\text{OH} + \text{CO} + \\ 0.2 \text{ C}_3\text{H}_6\text{O} + 0.5 \text{ G}\{\text{COH}_2\} + 5.5 \text{ Char} \\ \text{LIG} &\rightarrow \text{G}\{\text{COH}_2\} + 5.5 \text{ Char} \\ \text{LIG} &\rightarrow \text{G}\{\text{COH}_2\} + 5.5 \text{ Char} \\ \text{G}\{\text{CO}\} \rightarrow \text{CO} & 5\times10^{11} \text{ exp}(-50000/\text{RT}) \\ 0.4 \text{ CO}_2 + 0.2 \text{ G}\{\text{COH}_2\} + 6 \text{ Char} \\ \text{G}\{\text{CO}\} \rightarrow \text{CO} & 5\times10^{11} \text{ exp}(-71000/\text{RT}) \\ 0.4 \text{ CO}_2\} \rightarrow \text{CO}_2 & 6\times10^{11} \text{ exp}(-71000/\text{RT}) \\ 0.4 \text{ CO}_2 + 0.2 \text{ G}\{\text{COH}_2\} + 6 \text{ Char} \\ \text{G}\{\text{COH}_2\} \rightarrow \text{CO} + \text{H}_2 & 5\times10^{11} \text{ exp}(-71000/\text{RT}) \\ 0.5 \text{ C}\{\text{COH}_2\} \rightarrow \text{CO} + \text{H}_2 & 5\times10^{11} \text{ exp}(-75000/\text{RT}) \\ 0.4 \text{ CO}_2 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          | 3×T exp (-11000/RT)                   | 590                    |
| $\begin{array}{c} 0.2 \ \text{CO} + \text{G}\{\text{COH}_2\} + 0.325 \text{G}\{\text{H}_2\} + \text{Char} \\ \hline\\ \text{LIG-C} \ \rightarrow \ 0.35 \ \text{LIGCC} \ + \ 0.1 \ \text{COUMARYL} \ + \ 0.08 \ \text{PHENOL} \ + \ 4 \times 10^{15} \exp(-48500/\text{RT}) \ -100 \\ \hline\\ 0.41 \ C_2 \text{H}_4 + \text{H}_2 \text{O} + \text{G}\{\text{COH}_2\} + 0.495 \ \text{CH}_4 + 0.32 \ \text{CO} + 5.735 \ \text{Char} \\ \hline\\ \text{LIG-H} \ \rightarrow \ \text{LIGOH} + \text{C}_3 \text{H}_6 \text{O} \\ \hline\\ \text{LIG-O} \ \rightarrow \ \text{LIGOH} + \text{C}_3 \text{H}_6 \text{O} \\ \hline\\ \text{LIGC-O} \ \rightarrow \ \text{LIGOH} + \text{C}_0 \text{C}_2 \\ \hline\\ \text{LIGCC} \ \rightarrow \ 0.3 \ \text{COUMARYL} + 0.2 \ \text{PHENOL} + 0.35 \ \text{HAA} + 0.7 \ \text{H}_2 \text{O} + \\ 0.65 \ \text{G}\{\text{CH}_4\} + 0.6 \ \text{G}\{\text{C}_2 \text{H}_4\} + \text{G}\{\text{COH}_2\} + 0.4 \ \text{G}\{\text{CO}\} + 0.4 \ \text{CO} + 5 \times 10^6 \ \text{exp}(-31500/\text{RT}) \\ \hline\\ \text{6.75 \ Char} \\ \hline\\ \text{LIGOH} \ \rightarrow \ \text{LIG} \ + \ 0.15 \ \text{G}\{\text{H}_2\} + \ 0.9 \ \text{H}_2 \text{O} + 0.5 \ \text{CH}_3 \text{OH} + \\ \hline\\ \text{0.5 \ G}\{\text{CH}_3 \text{OH}\} + 0.05 \ \text{CO}_2 + 0.3 \ \text{CO} + \text{G}\{\text{CO}\} + 0.05 \ \text{HCOOH} + 3 \times 10^6 \ \text{exp}(-30000/\text{RT}) \\ \hline\\ \text{0.6 \ G}\{\text{COH}_2\} + 0.45 \ \text{G}\{\text{CH}_4\} + 0.2 \ \text{G}\{\text{C}_2 \text{H}_4\} + 4.15 \ \text{Char} \\ \hline\\ \text{LIGOH} \ \rightarrow \ 1.3 \ \text{G}\{\text{H}_2\} + 1.5 \ \text{H}_2 \text{O} + 0.5 \ \text{CO}_2 + 1.6 \ \text{G}\{\text{CO}\} + \\ \hline\\ \text{3.9 \ G}\{\text{COH}_2\} + 1.45 \ \text{G}\{\text{CH}_4\} + 0.7 \ \text{C}_2 \text{H}_4 + 10.15 \ \text{Char} \\ \hline\\ \text{LIG} \ \rightarrow \ \text{PEZMACR} \ & 8 \times \text{T} \ \text{exp}(-15000/\text{RT}) \\ \hline\\ \text{LIG} \ \rightarrow \ 0.95 \ \text{H}_2 \text{O} + 0.2 \ \text{C}_2 \text{H}_4 + 10.15 \ \text{Char} \\ \hline\\ \text{LIG} \ \rightarrow \ 0.95 \ \text{H}_2 \text{O} + 0.2 \ \text{C}_2 \text{H}_4 + 0.4 \ \text{G}\{\text{H}_2\} + 0.05 \ \text{HCOOH} + 1.2 \times 10^9 \ \text{exp}(-30000/\text{RT}) \\ \hline\\ \text{0.45 \ G}\{\text{CO}\} + 0.5 \ \text{G}\{\text{COH}_2\} + 5.5 \ \text{Char} \\ \hline\\ \text{LIG} \ \rightarrow \ \text{G}\{\text{COH}_4\} + 0.5 \ \text{G}\{\text{COH}_2\} + 6 \ \text{Char} \\ \hline\\ \text{G}\{\text{CO}\} \rightarrow \text{CO}_2 \ \text{G}\{\text{COH}_2\} + 6 \ \text{Char} \\ \hline\\ \text{G}\{\text{CO}\} \rightarrow \text{CO}_2 \ \text{G}\{\text{COH}_2\} + 6 \ \text{Char} \\ \hline\\ \text{G}\{\text{CO}\} \rightarrow \text{CO}_2 \ \text{G}\{\text{COH}_2\} + 6 \ \text{Char} \\ \hline\\ \text{G}\{\text{COH}_2\} \rightarrow \text{CO}_2 \ \text{G}\{\text{COH}_2\} + 6 \ \text{Char} \\ \hline\\ \text{G}\{\text{COH}_2\} \rightarrow \text{CO}_2 \ \text{G}\{\text{COH}_2\} + 6 \ \text{Char} \\ \hline\\ \text{G}\{\text{COH}_2\} \rightarrow \text{CO}_2 \ \text{G}\{\text{COH}_2\} + 6 \ \text{Char} \\ \hline\\ \text{G}\{\text{COH}_2\} \rightarrow \text{CO}_2 \ \text{G}\{\text{COH}_2\} + 6 \ \text{Char} \\ \hline\\ \text{G}\{\text{COH}_2\} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          | 40                                    | -330                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                                                                                                                                      | $1 \times 10^{10} \exp (-33000/RT)$   |                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                       |                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | $4\times10^{15} \exp(-48500/RT)$      | -100                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                       |                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                                       | 130                    |
| $\begin{array}{c} 0.65 \ \ G\{CH_4\} \ + \ 0.6 \ \ G\{C_2H_4\} \ + \ \ G\{COH_2\} \ + \ \ 0.4 \ \ \ G\{CO\} \ + \ \ 0.4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          | 1×10 <sup>9</sup> exp(-25500/RT)      | 260                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                       | -450                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.65 \text{ G}\{CH_4\} + 0.6 \text{ G}\{C_2H_4\} + G\{COH_2\} + 0.4 \text{ G}\{CO\} + 0.4 \text{ CO} +$                                 | 5×10 <sup>6</sup> exp(-31500/RT)      |                        |
| $\begin{array}{c} 0.5 \ \ G\{CH_3OH\} + 0.05 \ CO_2 + 0.3 \ CO + G\{CO\} + 0.05 \ HCOOH + 3\times10^8 \ exp(\text{-}30000/RT) \\ 0.6 \ \ G\{COH_2\} + 0.45 \ \ G\{CH_4\} + 0.2 \ \ G\{C_2H_4\} + 4.15 \ Char \\ \\ \hline LIGOH \ \rightarrow \ 1.3 \ \ \ G\{H_2\} + 1.5 \ \ H_2O + 0.5 \ \ CO_2 + 1.6 \ \ G\{CO\} + \\ 3.9 \ \ \ G\{COH_2\} + 1.45 \ \ G\{CH_4\} + 0.7 \ \ C_2H_4 + 10.15 \ Char \\ \hline LIG \ \rightarrow FE2MACR \\ \hline RST \ \ exp(\text{-}15000/RT) \\ \hline LIG \ \rightarrow O.95 \ \ H_2O + 0.2 \ \ CH_2O + 0.2 \ \ C_2H_4O + 0.4 \ \ CH_3OH + CO + \\ 0.2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          |                                       |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                       | 70                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          | $3\times10^8 \exp(-30000/RT)$         |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                       |                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          | $1 \times 10^2 \exp(-15000/RT)$       | -1300                  |
| $\begin{array}{c} \text{LIG} & \to 0.95 \text{ H}_2\text{O} + 0.2 \text{ CH}_2\text{O} + 0.2 \text{ C}_2\text{H}_4\text{O} + 0.4 \text{ CH}_3\text{OH} + \text{CO} + \\ 0.2 \text{ C}_3\text{H}_6\text{O} + 0.6 \text{ G}\{\text{CH}_4\} + 0.65 \text{ G}\{\text{C}_2\text{H}_4\} + 0.05 \text{ HCOOH} + 1.2\times10^9 \text{ exp(-30000/RT)} \\ 0.45 \text{ G}\{\text{CO}\} + 0.5 \text{ G}\{\text{COH}_2\} + 5.5 \text{ Char} \\ \\ \text{LIG} & \to \text{G}\{\text{CH}_4\} + 0.5 \text{ G}\{\text{C}_2\text{H}_4\} + 0.4 \text{ G}\{\text{H}_2\} + 0.6 \text{ H}_2\text{O} + 0.4 \text{ CO} + \\ 0.4 \text{ CO}_2 + 0.2 \text{ G}\{\text{CO}\} + 2 \text{ G}\{\text{COH}_2\} + 6 \text{ Char} \\ \\ \hline \text{G}\{\text{CO}_2\} & \to \text{CO}_2 \\ \hline \text{G}\{\text{CO}\} \to \text{CO} \\ \hline \text{G}\{\text{CO}\} \to \text{CO} \\ \hline \text{G}\{\text{COH}_2\} \to \text{CO} + \text{H}_2 \\ \hline \text{G}\{\text{COH}_2\} \to \text{CO} + \text{H}_2 \\ \hline \text{G}\{\text{COH}_2\} \to \text{CO} + \text{H}_2 \\ \hline \text{G}\{\text{CO}\} \to \text{CO} \\ \hline \text$ |                                                                                                                                          |                                       |                        |
| $\begin{array}{c} 0.2 \ C_{3}H_{6}O \ + \ 0.6 \ G\{CH_{4}\} \ + \ 0.65 \ G\{C_{2}H_{4}\} \ + \ 0.05 \ HCOOH \ \ \ + \ 1.2\times10^{9} \ exp(-30000/RT) \\ 0.45 \ G\{CO\} \ + \ 0.5 \ G\{COH_{2}\} \ + \ 5.5 \ Char \\ \hline LIG \ \rightarrow G\{CH_{4}\} \ + \ 0.5 \ G\{C_{2}H_{4}\} \ + \ 0.4 \ G\{H_{2}\} \ + \ 0.6 \ H_{2}O \ + \ 0.4 \ CO \ \ + \\ 0.25\times T\times exp(-8000/RT) \\ \hline 0.4 \ CO_{2} \ + \ 0.2 \ G\{CO\} \ + \ 2 \ G\{COH_{2}\} \ + \ 6 \ Char \\ \hline G\{CO_{2}\} \ \rightarrow CO_{2} \\ \hline G\{CO_{3}\} \ \rightarrow CO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          | 8×T exp(-12000/RT)                    |                        |
| $\begin{array}{c} 0.45 \; \text{G(CO)} + 0.5 \; \text{G(COH}_2) + 5.5 \; \text{Char} \\ \\ \text{LIG} \; \to \; \text{G\{CH}_4\} \; + \; 0.5 \; \text{G\{C}_2\text{H}_4\} \; + \; 0.4 \; \text{G(H}_2\} \; + \; 0.6 \; \text{H}_2\text{O} \; + \; 0.4 \; \text{CO} \; + \; } \\ 0.4 \; \text{CO}_2 + \; 0.2 \; \text{G(CO)} + \; 2 \; \text{G(COH}_2\} \; + \; 6 \; \text{Char} \\ \\ \hline \\ \text{G(CO}_2\} \; \to \; \text{CO}_2 \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \\ \hline \\ \text{G(COH}_2\} \; \to \; \text{CO} \; + \; \text{H}_2 \\ \hline \\ \text{G(COH}_2) \; \to \; \text{CO} \; + \; \text{H}_2 \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \; + \; \text{CO} \; + \; \text{H}_2 \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \; + \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \; + \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \; + \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{G(CO)} \; \to \; \text{CO} \; + \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{CO} \; + \; \text{CO} \\ \hline \\ \text{C(CO)} \; \to \; \text{C(CO)} \; + \; \text{C(CO)} \; + \; \text{C(CO)} \\ \hline \\ \text{C(CO)} \; \to \; \text{C(CO)} \; + \; \text{C(CO)} \; + \; \text{C(CO)} \\ \hline \\ \text{C(CO)} \; \to \; \text{C(CO)} \; + \; \text{C(CO)} \; + \; \text{C(CO)} \\ \hline \\ \text{C(CO)} \; \to \; \text{C(CO)} \; + \; \text{C(CO)} \; + \; \text{C(CO)} \\ \hline \\ \text{C(CO)} \; \to \; \text{C(CO)} \; + \; \text{C(CO)} \\ \hline \\ \text{C(CO)} \; \to \; \text{C(CO)} \; + \;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | 0                                     | -300                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          | $1.2 \times 10^9 \exp(-30000/RT)$     |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.45 G{CO} + 0.5 G{COH <sub>2</sub> } + 5.5 Char                                                                                         |                                       |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LIG $\rightarrow$ G{CH <sub>4</sub> } + 0.5 G{C <sub>2</sub> H <sub>4</sub> } + 0.4 G{H <sub>2</sub> } + 0.6 H <sub>2</sub> O + 0.4 CO + | 0.25×T×exp(-8000/RT)                  | -1770                  |
| $\begin{array}{cccc} G\{CO\} \to CO & 5\times 10^{11} \ exp(-50000/RT) & -1500 \\ G\{COH_2\} \to CO + H_2 & 5\times 10^{11} \ exp(-71000/RT) & 6800 \\ G\{H_2\} \to H_2 & 5\times 10^{11} \ exp(-75000/RT) & 0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4 CO2 + 0.2 G(CO) + 2 G(CO112) + 0 Chai                                                                                                |                                       |                        |
| $ \begin{array}{lll} \hline G\{COH_2\} \to CO + H_2 & 5 \times 10^{11} \ exp(-71000/RT) & 6800 \\ \hline G\{H_2\} \to H_2 & 5 \times 10^{11} \ exp(-75000/RT) & 0 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $G(CO_2) \rightarrow CO_2$                                                                                                               |                                       |                        |
| $G\{H_2\} \rightarrow H_2$ 5×10 <sup>11</sup> exp(-75000/RT) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $G\{CO\} \rightarrow CO$                                                                                                                 |                                       |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $G\{COH_2\} \rightarrow CO + H_2$                                                                                                        |                                       | 6800                   |
| $G\{CH_4\} \rightarrow CH_4 \qquad G\{C_2H_4\} \rightarrow C_2H_4 \qquad G\{CH_3OH_4\} \rightarrow CH_3OH \qquad 0.5 \times 10^{13} \ exp(-50000/RT) \qquad 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $G\{H_2\} \rightarrow H_2$                                                                                                               | 5×10 <sup>11</sup> exp(-75000/RT)     | 0                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          | 0.5×10 <sup>13</sup> exp(-50000/RT)   | 0                      |

<sup>\*</sup> Activation energy expressed in kcal/kmol

# 4. Thermal behaviour of thick particle pyrolysis

Figure 3 shows a comparison between experimental and predicted profiles of centre temperature, for the induction-furnace experiments described above. Experimental results in this figure were obtained for three pyrolysis temperatures: 723, 923 and 1023 K. The profiles show the presence of two thermal regimes during wood pyrolysis. For the three cases studied, temperature first increases until reaching an inflexion point respectively at 300, 190 and 160s. From this inflexion point, temperature strongly increases, even exceeding the steady state plateau when pyrolysis temperature is 723 K.

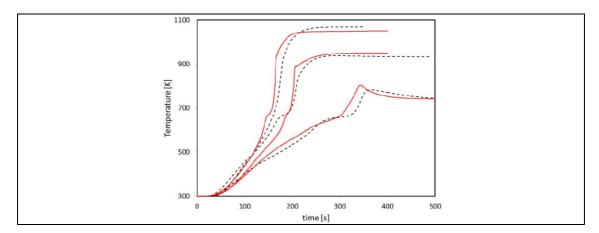



Figure 3: Centre temperature comparison between the proposed model (solid lines) and the experiments (dotted lines)

Figure 4.a shows the comparison between experiment and mechanism, for the nitrogen-heated experiments described above. In these measurements significant temperature gradients are observed inside the wood particle. There is a plateau at about 650 K and a maximum in the temperature profile. It seems also relevant to observe that wood particles are anisotropic and subject to splitting, in some experiments. This is a further complicating aspect. Figure 4.b shows a comparison between observed center temperatures for split and unsplit particles.

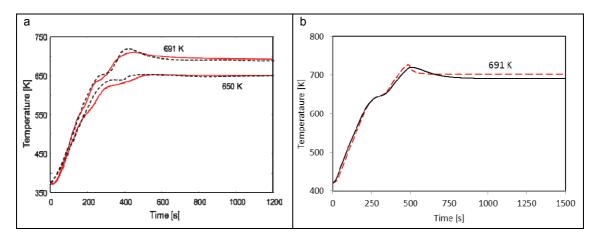



Figure 4: a: Centre temperature comparison between the proposed model (solid lines) and the experiments of (Bennadji et al. 2013) (dotted lines); D=1.9 cm. b: Comparison of the experimental center temperature for un-split (solid line) and split (dashed line) particles with D=2.54 cm.

Similarly, (Park et al. 2010) studied the pyrolysis of thick wood spheres in the temperature range 638-879 K. A comparison of experimental and predicted solid mass loss and temperature profiles for a furnace temperature of 688 K is shown in Figure 5.a. At 688 K, endothermic reactions cause a centre temperature plateau, with a large decrease of solid residue. Then, a steep temperature increase with the centre temperature peak exceeding the surface temperature is observed at low temperatures, with a negligible amount of further solid mass loss (Figure 5.b).

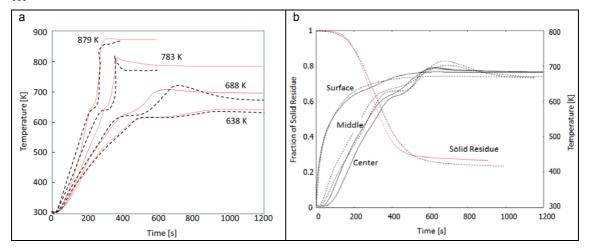



Figure 5.a: Centre temperature comparison between the proposed model (solid lines) and the experiments of (Park et al. 2010) (dotted lines). b: Solid mass fraction of wood sphere at 688 K. Comparison between the proposed model (solid lines) and the experiments of (Park et al. 2010) (dotted lines).

The general behavior of these temperature profiles is very similar in the three experimental studies considered. Mainly at low temperatures, the centre temperature shows a flat plateau at ~650 K followed by a maximum temperature higher than the external one. Similar results were already discussed by (Milosavljevic et al. 1996) when studying the thermochemistry of cellulose pyrolysis. They concluded, on the basis of several reliable pieces of experimental evidence, that the endothermicity of the process mainly reflects the latent heat requirement for vaporizing the tar decomposition products. In contrast, the exothermic character of char formation, which depends on the reaction conditions, is the reason for the occurrence of a maximum in centre temperature.

## 5. Conclusion

Pyrolysis tests are carried out in a new device for temperatures ranging between 723 K and 1073 K. Internal temperatures are measured continuously during the pyrolysis of a centimetre-scale wood sample. These experimental results with the ones of (Park et al. 2010) and (Bennadji et al. 2013) enable the validation of an extended version of the multistep kinetic model developed by (Ranzi et al. 2008).

Any feedstock is considered as a mixture of reference components: cellulose, hemicelluloses, and lignins. The kinetic model is coupled to a one-dimensional spherical, isotropic-property description of the species and temperature gradients inside the particle.

The extended model is used to simulate the three experimental data sets. The comparison is satisfactory and highlights that at low temperatures, the temperatures at the sample centre show a plateau followed by a peak. This can be explained by the release of tar components which competes with vaporization (endothermic) and cross-linking reactions with an increase of residual char (exothermic). (Bennadji et al. 2013)

# References

Bennadji, H., Smith, K., Shabangu, S., Fisher M., E. (2013) 'Low-temperature pyrolysis of woody biomass in the thermally thick regime', *Energy and Fuels*, 27, 1453-1459.

Blondeau, J., Jeanmart, H. (2012) 'Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anistropic particle', *Biomass and Bioenergy* 41, 107-121.

Catoire, L., Yahyaoui, M., Osmont, A., Gokalp, I. (2008) 'Thermochemistry of Compounds Formed during Fast Pyrolysis of Lignocellulosic Biomass', *Energy & Fuels*, 22(6), 4265-4273.

Mendes, F., Figueiredo, M. (2011) 'Problems Recorded on the Appropriateness of a Pilot Plant for Production of Second Generation Biofuels by Fast Pyrolysis', *Chemical Engineering Transactions*, 24.

Milosavljevic, I., Oja, V., Suuberg, E. M. (1996) 'Thermal effects in cellulose pyrolysis: Relationship to char formation processes.' *Industrial & Engineering Chemistry research*, 35(3), 653-662.

Park, W. C., Atreya, A., Baum, H. R. (2010) 'Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis', *Combustion and Flame*, 157(3), 481-494.

Ranzi, E., Cuoci, A., Faravelli, T., Frassaldati, A., Migliavacca, G., Pierucci, S., Sommariva, S. (2008) 'Chemical Kinetics of Biomass Pyrolysis', *Energy Fuels*, 22, 4292-4300.