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This contribution presents a novel approach, by which the number of direct environmental footprints is 

reduced to a minimum number of “independent” ones (INDFs) through correlations among the 

footprints that show similar behaviour. The correlations are investigated between direct carbon, energy, 

water, water pollution, and land footprints. Those footprints that show similar behaviour are grouped in 

subsets of correlated footprints. In each subset only one footprint, an INDF is taken into the multi-

objective optimisation, whilst the rest of the “dependent” footprints (DFs) are evaluated after the 

optimisation from the INDFs. In this way, the dimensionality of the criteria within the multi-objective 

optimisation is significantly reduced, so that a multi-parametric optimisation is performed with INDFs as 

parameters. The subjective weighting of environmental and social indicators or footprints is thus 

avoided. This novel approach is illustrated using a demonstration case study of different biomass 

energy supply chains.  

1. Introduction 

The world is currently facing environmental, financial and social challenges, primarily due to human 

population growth, globalisation, the unsustainable use of resources, and the unsustainable growth of 

world economy over the last decades (Lior, 2012). Sustainable development requires an integration of 

economic, environmental and social components at all levels, and thus leading to a multi-objective 

optimisation problem, as illustrated by De Benedetto and Klemes (2009). Usually ε-constraint method 

is applied (Pieragostini et al., 2012) and different sets of Pareto optimal solutions are obtained.  

In many studies just one objective (e.g., carbon footprint) is considered and evaluated besides an 

economic criterion, which most likely leads to simplified conclusions. However, more realistic solutions 

are obtained if more impacts are considered (e.g., carbon, nitrogen, water footprints).  Important 

limitation in this case is that computational burden grows rapidly in size with the number of objectives 

(Guillén-Gosálbez, 2011). Other limitations are that multi-objective optimisation can be time 

consuming, and there is difficulty in visualisation and interpretation of the objective space (Pozo et al., 

2012). It also prevents the carrying-out of an exact optimization, resulting in only two- or at most three-

dimensional Pareto projections, thus providing only a narrow view with underestimated environmental 

metric estimates (Kravanja, 2012). 

Usually, the number of objectives is reduced into aggregated single sustainability indicator (e.g., 

Kravanja and Čuček, 2012). However, this approach has the drawbacks of subjective weighting and 

difficulty of selecting the best solution. Reduction of the dimensionality is thus required, and should be 

based on a systematic mathematical approach. Reduction of the dimensionality is an area of statistical 
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multivariate analysis. The methods include principal component analysis, factor analysis, multi-

dimensional scaling, clustering systems, etc.  

Several papers are dealing with the reduction of the dimensionality of multi-objective optimisation 

problems. Deb and Saxena (2005) propose an evolutionary multi-objective optimizationpcocedure, 

while Pozo et al. (2012) developed a method based on principal component analysis. Brockhoff and 

Zitzler (2009) calculated an approximation error to quantify to which extent the dominance structure of 

the problem changes when omitting objectives. Guillén-Gosálbez (2011) developed a MILP-based 

method, where the error of omitting objectives is minimised, and demonstrated that some of objectives 

behave in a non-conflicting manner, and thus dimension of the problem can be reduced. Vaskan et al. 

(2012) applied the MILP method for the optimal design of heat exchanger networks considering 

environmental impacts. Gutiérrez et al. (2010) used principal component analysis and multi-

dimensional scaling methodology in order to reduce dimension of the problem.  

This paper presents the novel approach, by which the footprints that show similar behaviour are 

grouped in subsets of correlated footprints. Different criteria are proposed for determining the 

correlations among footprints and selecting the INDFs: i) ratio between pair of footprints, ii) overlap of 

footprints in process variables, and iii) average absolute normalised deviation. INDFs are then taken 

into multi-objective multi-parametric optimisation. The DFs are thus evaluated from the INDFs using 

linear or nonlinear correlations. Methodology for the development of linear and nonlinear correlations 

among different footprints within a multi-objective optimisation approach presented in Čuček et al. 

(2012a) is applied. 

2. Description of the proposed approach 

The dimensionality reduction in multi-objective optimisation consists of three steps. First, the 

correlations among footprints are identified, and INDFs are selected. Then, multi-parametric 

optimisation is performed for the INDFs using the ε-constraint method. Finally, non-linear quadratic-

based correlations are performed for DFs, which are evaluated after the optimisation from the INDFs.  

2.1 Identification of correlations among footprints 
Identification of correlations among footprints is performed directly from the matrix of the process 

variables and footprints. The direct environmental footprints (burdening of the environment) are thus 

obtained using the following equation:  

d
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where ,av f  are  the matrix coefficients, and vx  are the corresponding process variables at their optimal 

values, where profit is maximised.     

Three measurements were proposed: 

i) Ratio between pairs of footprints (  and f ff ): 
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For perfect correlation the ratio between footprints is 1. Because ,f ffR can differ from , ,ff fR  geometric 

mean is calculated using the following equation:  

, , ,        f ff f ff ff fGR R R f F ff F             (3) 

ii) Overlap of pair of footprints (  and f ff ) in process variables: 
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This measurement represents a similarity between pairs of footprints. If footprint f is defined by the 

same process variables as footprint ,ff  then the overlap coefficient is 1. Because ,f ffO can be different 

from , ,ff fO  geometric mean is calculated: 

 , , ,        f ff f ff ff fGO O O f F ff F             (5) 

 

iii) Average absolute normalised deviation between pair of footprints  (  and f ff ): 
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Small values indicate good agreement between pair of footprints. Again, geometric mean is calculated 

because ,f ffD can be different from , ,ff fD : 

 , , ,        f ff f ff ff fGD D D f F ff F             (7) 

From above criteria two or three INDFs are selected. 

2.2 Multi-objective optimisation 

In the second step a multi-objective optimisation is performed for selected N fi  INDFs, fi FI . ε-

constraint method is applied to this multi-parametric optimisation where sequences, one for each 

footprint, of constrained single-objective mixed-integer non-linear programming ,...,1
(MINLP) fi fiN fi

 

problems are thus solved for INDFs as the maximisation of the profit subjected to relative INDFs. 

Relative INDFs are being defined as the INDFs divided by their reference values. A multi-dimensional 

graph of Pareto optimal solutions is thus obtained. 

2.3 Correlations among “dependent” and “independent” footprints in group 
A few INDFs can be selected applying criteria i)-iii). In this way, two or three groups with similar 

behaviour are identified. DFs are evaluated from INDFs in each group using linear or nonlinear 

correlations (Čuček et al., 2012a). For better curve fitting quadratic-based non-linear correlations is 

used.   

3. Demonstration case study 

The concept described above is applied within a case study of regional biomass and bioenergy supply 

chains (Čuček et al., 2010) extended for simultaneous assessment of footprints (Čuček et al., 2012b). 

It follows a four layer structure, which consists of harvesting, collection and pre-processing, core 

processing, and usage of products including the transportation flows within and between the layers. 

Different biomass sources are considered, corn grains and stover, wood chips, municipal solid waste, 

manure and timber. Dry-grind process, anaerobic digestion, incineration and sawing convert biomass 

into valuable products, heat, electricity, bioethanol, and distillers dried grains with solubles, digestate, 

and boards. Besides processed products, also food can be produced. Supply chains incorporate 

different environmental pressures, and consider different direct footprints, carbon, energy, water, water 

pollution and land footprints.  

3.1 Results and discussion 
Applying criteria i) – iii), similarity among footprints was estimated. With greater accuracy three INDFs 

should be selected, carbon, water, and land footprints. When less exact, only two INDFs can be 

selected. In this way, two groups with similar behaviour are identified. Three-dimensional problem is 

obtained with selected two INDFs, where the profit is the main criterion, and carbon and water 

footprints are identified as INDFs. Figure 1 shows the results, obtained by multi-parametric 

optimisation.  
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Figure 1: Profit versus INDFs 

DFs are evaluated from INDFs using nonlinear quadratic-based correlations (Čuček et al., 2012a). 

Carbon footprint (CF) is grouped with energy footprint (EF). Water footprint (WF) is grouped with water 

pollution (WPF) and land footprints (LF). Nonlinear correlations based on quadratic function for carbon 

footprint are taken from Table 2 in Čuček et al. (2012a). The correlations among the first group – 

carbon and energy footprints are presented on Figure 2 and the corresponding profit – dependent 

footprint 2D projection on Figure 3.  
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Figure 2: EF versus CF                                              Figure 3: Profit versus relative EF at changing WF 

In the second group water footprint is selected as INDF. DFs in the second group are expressed 

through water footprint. Linear and non-linear correlations among footprints, where water footprint is 

selected as INDF are presented in Table 1. 

The correlation among the second group – water and water pollution, and water and land footprints are 

presented on Figures 4 and 5, respectively. These corresponding profit – dependent footprint 

projections are given on Figures 6 and 7. 
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Table 1: Obtained linear and non-linear correlations among footprints, where water footprint is selected 

as INDF  

 Footprint Linear correlation  Non-linear correlation based on quadratic function 

ENF 3

,ENF ,WF1.002 2.135 10r r

j jf f      2

,ENF ,WF ,WF1.580 0.907 ( ) 3.071 2.500r r r

j j jf f f       

CF 3

,CF ,WF1.002 2.135 10r r

j jf f      2

,CF ,WF ,WF2.050 1.303 ( ) 4.409 4.208r r r

j j jf f f       

WPF 2

,WPF ,WF1.025 2.469 10r r

j jf f      2

,WPF ,WF ,WF2.564 1.774 ( ) 6.005 6.679r r r

j j jf f f       

LF 2

,LF ,WF1.077 7.687 10r r

j jf f      2

,LF ,WF ,WF3.667 2.860 ( ) 9.681 13.932r r r

j j jf f f       
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Figure 4: WPF versus WF                                           Figure 5: LF versus WF  
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Figure 6: Profit versus relative WPF at changing CF  Figure 7: Profit versus relative LF at changing CF 

4. Conclusions and future work 

In the presented contribution, a methodology (principle and procedure) for identification of correlations 

among different objectives (footprints) has been introduced. Following this procedure, the 

dimensionality of the criteria set can be reduced significantly to a minimum of INDFs. The methodology 

was successfully applied to a demonstration case study of biomass energy supply chains where the 

dimensionality of footprints has been reduced from five to two. 

For future work, the correlations from other footprints should also be investigated, such as nitrogen and 

phosphorus footprints, and the issue of biodiversity, measured by biodiversity footprints. In order to 

achieve more realistic solutions, also indirect (unburdening) effects should be included, therefore obtaining 

total effects (burdening and unburdening) (Čuček et al., 2012b).  
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The application to heat and power generation and distribution should also be pursued, as one of the 

problem areas of great impact on the environment and the economy. 
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