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This paper presents development of conceptual design model of DMFC for a portable application. The 

target power for the design is 0.4 watt per single cell, with 4 cm
2
 active area. The current density and 

fuel cell voltage were fixed to 0.175 A/cm
2
 and 0.57 V respectively. In order to develop new design, 

mass and heat transport will be analysed to get a better performance in the system. The new design 

will be applied to the portable applications such as cellphone, laptops and etc.  

1. Introduction 

Since methanol is one of the fuels with a very high specific energy, it is the best selection in choosing 

fuel in DMFC. Furthermore, methanol is also a great extend easier to store and transport without 

auxiliary devices for intermediate fuel processing and fuel reforming steps which are required by 

hydrogen-oxygen fuel cells. In DMFC system, the byproducts are ecologically inoffensive carbon 

dioxide and water. These are the reasons why DMFC system has been regarded as a potential 

substitution to conventional batteries for powering various low-power devices.  

A number of studies (Bernardi, 1990; Springer et al., 1991; Fuller and Newman, 1993; Argyropolous et 

el., 1999a; Scott et al., 1999; He et al., 2000; Berning et al., 2002; Nordlund and Lindbergh, 2002; 

Wang and Wang, 2003; Murgia et al., 2003; Baschuk et al., 2003) have been reported simulating 

PEMFC and DMFC, but most of them were isothermal models, except for a few papers that took into 

account thermal effects for simulating solid oxide fuel cell (Yuan et al., 2003; Li et al., 2004; Li and 

Suzuki, 2004). For instance, Nordlund and Lindbergh (2002) proposed an isothermal agglomerate 

model based on the reaction mechanism for the electrochemical oxidation of methanol to study the 

influence of the porous structure on the direct methanol fuel cells. Wang and Wang (2003) used two-

phase multi component model to simulate a DMFC. The anode and cathode electrochemical reactions, 

diffusion and convection of both gas and liquid phases in the backing layers and flow channels, mixed 

potential effect due to methanol crossover and the effect of methanol feed concentration were 

explored. 

Even though experimental approaches can give the visualization result, mathematical programming 

approaches is more favorable to researchers these days since its can give the instant result without 

time consuming. Since 1999’s, Argyropoulos et al. (1999a; 1999b) developed a two-phase flow pattern 

in the anode channel under various operating conditions. This flow visualization on the anode side can 
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lead to a valuable understanding of CO2 bubble dynamics in a DMFC. However, the drawback of their 

studies is that they were done under low cell performance. To further flow visualization studies, Lu and 

Wang (2004) have developed a transparent DMFC that allows for visualization of bubble dynamics on 

the anode side and liquid droplet dynamics on the cathode. 

2. Conceptual Model Development 

The conceptual design model will be discussed in this section is referring to model with the power is 

about 0.4 watt for single cell. Methanol solution was fed into the system through anode side whereas 

oxygen was fed through cathode side. These feeds were fed at condition of 25
o
C and 1 atm. Mole of 

species can be calculated using the equation as follows: 

   
  

  
 (1) 

with np is mole of species; i is current density; A is active area, n is number of mole; and F is faraday 

constant.  

To make the development of the model more comprehensible, Figure 1 will be used which is consists 

of: 

 An anode flow channel (AFC), anode diffusion layer (ADL) and anode catalyst layer (ACL) at anode 

side 

 A polymer electrolyte membrane 

 A cathode catalyst layer (CCL), cathode diffusion layer (CDL) and cathode flow channel (CFC) at 

cathode side 
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Figure 1: schematic diagram of MEA in DMFC system 

2.1 Mass transport 
The mass transport process occurred in DMFC system involved methanol, water and oxygen. Based 

on Figure 1, at anode side, methanol and water transport from storage tank to the AFC is described as 

follows:  

         
     

     (2) 

where i represents methanol (MeOH) or water (H2O), N is the molar flux,   
  and   

   are the molar 

concentration of methanol or water in the storage tank and at the AFC respectively. In the ADL and 

ACL, methanol and water flux are explained based on the concentration gradient by Fick’s law as 

follows: 

       
          

 
   

   

  
 , i represents methanol or water     (3) 
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 , i represents methanol or water     (4) 

where   
          

 and   
          

 represent the effective diffusion coefficients of methanol and water in the 

ADL and ACL, respectively. 

In fuel cells, all fluxes can be represented in single characteristic flux, the current density or charge flux 

of the fuel cell. At anode side, methanol and water flux are related to the current density and 

permeation flux of methanol and water through the membrane,      
   and     

  ; by:  

       
     

  
      

           (5) 

      
     

  
     

           (6) 

The transport of methanol and water through the membrane is assumed to be due to the effect of the 

concentration gradient and electro-osmotic force as shown:  

             
         

 
      

  

  
       

     

 
       (7) 

    
         

         
 
     

  

  
     

     

 
        (8) 

with electro-osmotic drag;       and    is defined as the number of methanol and water molecules 

dragged by the hydrogen ions moving through the membrane.  

At cathode side, oxygen and water transport is spotted. Oxygen extracted from the air reacts with 

electron and proton to produce water as a waste in DMFC system. Additionally, there is part of oxygen 

is disbursed due to the methanol crossover to form an internal current and a mixed potential. Therefore 

the oxygen flux is related to the current density and the permeation flux of methanol through the 

membrane by:  

   
   

   

  
                  

      
          (9) 

   
represents the stoichiometric coefficient of oxygen in the cathode reaction for oxygen reduction; 

whereas,          
represents stoichiometric coefficient of oxygen in the cathode reaction for methanol 

oxidation (overall reaction).  

On the other hand, water flux is related to the water production from the oxygen reduction and 

methanol crossover oxidation (overall reaction) and the net water flux transported from the anode to 

the cathode, as follows:  

        
    

  
                         

        
                     (10) 

    
 represents the stoichiometric coefficient of water in the cathode reaction for oxygen reduction; 

whereas,           
 represents stoichiometric coefficient of water in the cathode reaction for methanol 

oxidation (overall reaction).  

In the CCL and CDL, oxygen and water flux can be based on the concentration gradient as:  

       
          

 
   

   

  
 ,  j represents oxygen or water (at cathode side)                (11) 

       
          

 
   

   

  
 ,  j represents oxygen or water (at cathode side)                (12) 

where   
          

 and   
          

 are the effective diffusion coefficient of oxygen and water in the CCL and 

CDL.  

2.2 Heat Transport 
Heat transport is detected in DMFC system because of electrochemical reaction occurred. This 

reaction is exothermic process which is; it will release heat while the reaction happened. The 

electrochemical reaction (methanol oxidation and oxygen reduction) occurred at ACL and CCL.  



 

352 

At the anode side, heat generated by the electrochemical reaction in ACL is given by:  

                        
        

  
                     (13) 

Equation 14 explained, the first term represents the heat due to the activation and mass transfer 

overpotentials at the anode and the second term represents the entropy change of the anodic 

electrochemical reaction, with     denoting the anodic reaction enthalpy and     the Gibbs free 

energy.  

At cathode side, heat generated at the CCL can be determined using the following equation: 

                                       
        

  
          

        

  
                 (14) 

In this equation, the first term represents the heat due to the activation and mass transfer 

overpotentials and mixed potential caused by methanol crossover through cathode. Second term 

represents the entropy change of cathodic electrochemical reaction, with     denoting the cathodic 

reaction enthalpy and    , the Gibbs free energy; while the third term represents the entropy change 

of methanol oxidation reaction due to methanol crossover. 

2.3 Cell performance 
The prediction of cell voltage can be attained with the determination of methanol and oxygen 

concentration at the catalyst layer, temperature profiles and anodic and cathodic overpotentials as 

shown below:  

                                                       (15) 

with       is the thermodynamic equilibrium potential of the cell and is a function of temperature and 

pressure, and       is the internal resistance of the fuel cell.       can be calculated using the equation 

below: 

            
       

  

  
                      (16) 

3. Analytical Solutions 

With the specific given of current density and active area (table 1), the volume of methanol, water, 

oxygen and carbon dioxide can be calculated using equation (1).   

Table 1: Typical value design parameters 

Parameters Value Unit Parameters Value Unit 

Active area 4 (   ) cm
2
 Oxygen density 1.141 g cm

-3
 

Current density 0.175 A cm
-2

 CO2 density 0.77 g cm
-3

 

Fuel cell voltage 0.57 V Methanol density 0.7918 g cm
-3

 

Faraday constant 96,500 C mol
-1

 Water Density 1 g cm
-3

 

 
Methanol: 

      
          

          
                      

      
                                             

                          

 

Water:    
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Oxygen: 
 

   
  

          

 
 

 
        

                
     

   
 

                                          

                       

Carbon dioxide: 

    
  

          

          
                 

   

    
 

                                         

          
            

To calculate the concentration of methanol at the ACL, equation (2), (3), (4) and (5) will be combined 

as shown below: 

     
     

          
             

              
          

       
         

     
  

        
          

      
          

    

                (17) 

With the assistant of equation (9), (11) and (12), the concentration of oxygen at the CCL will be 

calculated by: 

   

      
 

  
         

 

 
      

          

          
    

              

    

          
   

                   (18) 

4. Conclusion 

The conceptual design presented in this paper will be used to design a new system of DMFC that can 

target for unsteady state situation with various type of feed condition. With the power of 0.4 watt per 

fuel cell, stacking will be used to get the target power for the portable applications such as cellphone, 

laptops and etc. Table 2 shows the comparison between the conceptual designs presented in this 

paper with the previous conceptual design. 

Table 2: Comparison result 

Parameters This study Basri (2010) Ko et al. (2010) 

Active area 4 cm
2
 2 cm

2
 4 cm

2
 

Current density 0.175 A cm
-2

 0.037 A cm
-2

 0.167 A cm
-2

 

Fuel cell voltage 0.57 V 0.14 V 0.21 V 

Power density 0.1 W cm
-2

 0.005 W cm
-2

 0.02 W cm
-2
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