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The aim of the work is to compare the performances of the novel Attic method for linear programming 

(Buzzi-Ferraris, 2011) with the existing algorithms of the simplex and interior point families. 

Potentialities of the new method are demonstrated and quantified on the linear programming problem 

of thermal cracking refinery. 

1. Introduction 

Linear programming has been acknowledged for many years as the essential basis to face a wide 

number of optimization problems across a spectrum of different scientific and industrial areas, ranging 

from oil blending problems (Schrage, 1997; Mendez et al., 2006) to production scheduling (Afentakis et 

al., 1984; Barany et al., 1984; Dzielinski and Gomory, 1965; Lasdon and Terjung, 1971) to name but a 

few. Numerical roots can be traced back to the pioneering work done by Dantzig for the Simplex 

method (Dantzig, 1963; Dantzig, 1982; Dantzig and Orchard-Hays, 1954; Dantzig et al., 1955; Dantzig 

and Wolfe, 1961) and by Karmarkar for the Interior Point algorithms (Martin, 1999; Frisch, 1955; Fiacco 

and McCormick, 1968; Vanderbei, 2007). 

The idea, on which the Attic method is based and for which we remind the reader to the pioneer 

dedicated paper of Buzzi-Ferraris (2011) for every numerical detail, is that whatever feasible point 

(vertex or nonvertex) sees the vertex where the solution is (it can be joined to the solution by a line). 

Often, this line must deviate from one or more constraints on which the working point is lying and pass 

through the attic to achieve the solution. If rather than moving from one vertex to another, one moves 

from one feasible point to another feasible point, large regions can be skipped before reaching a new 

vertex (connection of three tiles). This avoids many calculations. This strategy may seem similar to the 

one used by another important family of methods, the Interior Point algorithms (Martin, 1999; 

Vanderbei, 2007) which were developed to overcome the shortcomings of Simplex methods. 

Nevertheless, as it will be shown later, the Attic method is based on a totally different technique since it 

does not consider constraints as untouchable barriers, rather a specific constraint is touched at each 

iteration. Actually, in the Attic method, a direction that moves inside the feasible region and along which 

the function improves is adopted, and the search on is stopped when another constraint (tile) is 

encountered. The direction of search is selected by looking for the maximum function improvement. 

The new point on the roof is generally not a vertex and the number of active constraints for each 

iteration is usually smaller than the number of constraints required for a vertex. By iterating the 

procedure, the number of active constraints only sometimes equals the dimension of the linear 

programming problem nV. Therefore, the Attic method could seem a middle course between the 

Simplex method and the Interior Point method: actually, the working point must not lay on a vertex, 
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which makes the method to behave more like the Interior Point method, but, at the same time, the 

active constraints are actually satisfied, which makes to look like the Simplex method. 

2. Thermal cracking refinery problem 

The structure of the thermal cracking refinery proposed and solved by Manne (1963) is a well-

established linear programming problem without any big issue in its solution (no degeneracy, 

zigzagging, cycling…). It is therefore the ideal application to test the normal performances of the novel 

Attic method with respect to the existing Simplex and Interior Point classes of methods, currently 

adopted to handle linear programming problems. The thermal cracking refinery consists of a crude-

distillation column and associated steam strippers, a thermal cracking and fractionating system, and 

facilities for the blending and preparations of market products (Figure 1). The feed consists of a 38° 

API gravity Mid-Continent crude. The properties and amounts of the various materials present in this 

crude are listed in Table 1-2. The cracking section consists of four coils and a secondary fractionating 

column. There are provisions for the recycle of any portion of the three cracked distillate cuts. From the 

top of the column gasoline, gas and steam used for stripping are obtained. Such stream is sent to a 

condenser where gasoline and stream are condensed. Looking more in detail the cracking section, the 

cracked fraction per pass is taken to be 0.3 for distillates and 0.5 for residue (without considering the 

recycle). The yields for this section are given in Table 3. In the blending section the intermediate 

products are blended to form the desired final product respecting the specification reported in Table 4. 

In order to create the mathematical model, it is necessary to make an arbitrary choice: define the 

portion of the output of the primary distillation column (SL, SM, SH, SR) using an assigned cracking 

feedstock (FL,FM,FH,FR). This leaves as straight-run materials available for fuel oil blending (1-FL)SL, 

(1-FM)SM, (1-FH)SH e (1-FR)SR. Denoting by Zi each secondary distillation column output and with Ri 

each recycle, the cracking coils will process the following: RLZL, RMZM and RHZH. 

Figure 1: Manne’s thermal cracking refinery 
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Table 1: Cuts from 38.0° API Gravity Crude Oil, Mid-continent (Mixed Base) 

Cut  10%vol dist. temp. (°F) End point (°F) %w of crude %w cumulative 

C2 and lighter - - 0.02 0.02 

C3 gases - - 0.22 0.24 

C4 gases - - 1.46 1.70 

Gasoline 150 400 24.8 26.5 

Light distillate 400 520 14.6 41.1 

Medium distillate 510 630 9.5 50.6 

Heavy distillate 620 720 12.3 62.9 

Residue - - 37.1 100.0 

Table 2: Product streams, before blending 

Material 
10%vol dist. 

temp (°F) 

End point 

(°F) 

Specific 

gravity 

Octane/Cetane 

number 

Viscosity 

At 100°F            At 122°F 

cSt         µi            cSt        µi 

Gasoline         

Straight run 150 400 0.735 ON 58 - - - - 

Cracked 150 400 0.755 ON 75 - - - - 

Light distillate         

Straight run 400 520 0.816 CN 53 1.73 -0.422 1.44 -0.5214 

Cracked 400 520 0.840 CN 35 1.75 -0.419 1.45 -0.4919 

Medium distillate         

Straight run 510 630 0.830 CN 58 3.43 -0.215 2.6 -0.2965 

Cracked 510 630 0.865 CN 35 3.37 -0.220 2.65 -0.2853 

Heavy distillate         

Straight run 620 720 0.855 CN 61 7.4 -0.044 5.1 -0.1215 

Cracked 620 720 0.916 CN 40 11.2 0.030 7.5 -0.0417 

Residuum         

Straight run - - 0.944 - - - 88 0.2895 

Cracked - - 1.022 - - - 3.3 0.5464 

Table 3: Yields of conversion products, single-pass cracking (%w of oil converted) 

Yields Light Medium Heavy Residue 

Straight-run charge stocks 

Gas 15 15 15 5 

Gasoline 76 67 67 34 

Light cycle oil - 1 9 19 

Medium cycle oil 4 - 5 21 

Heavy cycle oil 3 4 - 21 

Residue 2 3 4 - 

Total 100 100 100 100 

Total converted, %w of charge 30 30 30 30 

Cycle oil charge stocks 

Gas 18 16 16  

Gasoline 51 48 48  

Light cycle oil - 8 8  

Medium cycle oil 13 - 12  

Heavy cycle oil 10 14 -  

Residue 8 14 16  

Total 100 100 100  

Total converted, %w of charge) 30 30 30  
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Table 4: Product streams, after blending 

  Specifications 

End product Permissible components 

Maximum 

specific 

gravity 

Minimum 

ON/CN 

Market price 

(cents/gallon) 

Viscosity 

At 100°F       At 122°F 

cSt      µi        cSt     µi 

Premium 

gasoline 

SR/cracked gasoline, 

C4 gases 
- 88 ON 11.56  - -  

Regular 

Gasoline 

SR/cracked gasoline, 

C4 gases 
- 82 ON 10.44  - -  

Propane-

propylene gases 
C3 cut - - 4.00 - - -  

Butane-butylene 

gases 
C4 cut - - 9.00 - - -  

Kerosene SR light distillate - - 8.88 - - -  

Fuel oil 1 
SR/cracked light and 

medium distillates 
0.850 - 8.44 1.9 -0.400 -  

Fuel oil 2 

SR/cracked light, 

medium, and heavy 

distillates 

0.882 40 CN 7.88 4.3 -0.160 -  

Premium diesel 

oil 

SR and cracked light, 

medium, and heavy 

distillates 

0.840 55 CN 8.63 2.6 -0.290 -  

Fuel oil 

SR and cracked light, 

medium, and heavy 

distillates; SR and 

cracked residues 

1.014 - 2.26 - - 375 0.411 

Dry fuel gases C2 cut  - 
0.2 cents/ 

pound 
- - -  

 

In order to evaluate the yields the following procedure must be performed: 

 Arbitrary choice of Fi. 

 Arbitrary choice of Ri. 

 Solve with respect to Zi the following equations: 

0.1022 0.00314 0.00322 0.0352 0.7 0.024 0.024L L M H R L L M M H HZ F F F F R Z R Z R Z        (1) 

0.00175 0.0665 0.00185 0.039 0.039 0.7 0.036M L M H R L L M M H HZ F F F F R Z R Z R Z        (2) 

0.00131 0.00114 0.0861 0.0390 0.03 0.042 0.7H L M H R L L M M H HZ F F F F R Z R Z R Z        (3) 

 Calculation of the net material balance: 

 1L L LC Z R   (4) 

 1M M MC Z R   (5) 

 1H H HC Z R   (6) 

0.00657 0.00428 0.00554 0.00928 0.054 0.048 0.048G L M H R L L M M H HC F F F F R Z R Z R Z        (7) 

0.0333 0.0191 0.0247 0.0631 0.1503 0.144 0.144
asoG L M H R L L M M H HC F F F F R Z R Z R Z        (8) 

0.0009 0.009 0.0015 0.185 0.024 0.042 0.048R L M H R L L M M H HC F F F F R Z R Z R Z        (9) 

The streams must be blended to meet the specifications on each product as follows: 

 Gasolines: there are two market grades of gasoline derived from blends of straight-run gasoline, 

cracked gasoline, butane and tetraethyl lead fluid. The specifications to meet are: maximum 

Reid vapor pressure for both the types, 10 pounds per square inch, and minimum octane 
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numbers of 82 and 88, respectively. Since butane is available at lower cost, it is estimated that 

10 %vol of butane allows to meet the vapor tension specification on the octane number exactly. 

 Kerosene: kerosene is made by straight-run light distillate without any more treatments. 

 Distillate oil fuel 1: is made from a blend of straight-run and cracked light and medium distillates. 

The specifications to meet are a maximum viscosity of 1.9 centistokes at 100 °F and a maximum 

specific gravity of 0.850. 

 Distillate oil fuel 2: is made from a blend of straight-run and cracked light, medium, and heavy 

distillates. The specifications are the following: viscosity less than 4.3 centistokes at 100 °F, a 

maximum specific gravity of 0.882; a minimum cetane number of 40; a flash point greater than 

100 °F; an ASTM distillation end point at a maximum of 675 °F. 

 Premium diesel fuel: This product is to be made from a blend of any of the six distillate 

materials, and must satisfy the following conditions: viscosity less than 2.6 centistokes at 100°F; 

specific gravity less than 0.840; cetane number greater than 55; 90 percent over in ASTM 

distillation at a maximum of 585 °F; and end point at a maximum of 646 °F. 

 Number 6 bunker fuel oil: This product is composed primarily of straight-run and cracked 

residues. The specifications are as follows: viscosity less than 375 centistokes at 122 °F and 

specific gravity less than 1.014 

3. Numerical comparison 

Manne’s problem has been solved using certain well-known algorithms. Hence specific programming 

languages have been used and code samples have been developed in this research activity so as to 

run them on the same machine. We selected some of the most common algorithms and languages to 

implement the Manne’s refinery: 

 Simpo (Vanderbei, 2007): based on the Simplex method 

 CPLEX (IBM): which benefits from both the Simplex and Interior Point methods 

 MINOS 5.5 (AMPL) 

 Matlab (MathWorks): the linprog function is used and it is possible to select both the Simplex 

and the Interior Point method simply switching an option. 

 The Attic method. 

As reported in Figure 2, the number of iterations declared in the original article is similar to the one 

needed to Simpo e MINOS 5.5 to solve the problem. CPLEX solver, using non-linear techniques, is 

able to halve it. Matlab performances are even more interesting, with just 15 (Simplex) and 13 (interior 

Point) iterations. Attic results are even better: only 4 iterations are required to solve this problem. 

Given the small size of the problem, no consideration could be made about the computing times of the 

different solver, a parameter particularly important for the industrial application, so it is necessary to 

perform further tests on the Attic method, either by solving a larger scale problem either solving a MILP 

problem where a large number of LPs has to be solved. 
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Figure 2: Numerical comparison. Attic method requires much less iterations than the existing methods 
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4. Conclusions 

The Attic method results to be the most efficient method in terms of number of iterations with respect to 

well-known algorithms and packages. The gap with the existing algorithm in the number of iterations 

seems to be relevant, hence, further investigations are needed to compare the different algorithms in 

terms of calculation time and on different problems. For instance, an ongoing research activity with 

Linde Gas is focused on the industrial application of the Attic method and to the quantification of 

numerical performances with respect to the traditional algorithms. 
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